Мода и стиль

Принцип действия торпеды. Торпедное оружие. Приборы маневрирования и управления

Принцип действия торпеды. Торпедное оружие. Приборы маневрирования и управления

Небезынтересная статья Максима Климова "Об облике современных торпед подводных лодок" была опубликована в журнале "Арсенал Отечества" № 1 (15) за 2015 год. С разрешения автора и редакции журнала ее текст предлагается читателям блога.

Китайская 533-мм торпеда Yu-6 (211ТТ1 разработки российского ЦНИИ «Гидроприбор»), оснащенная российской шланговой лодочной катушкой телеуправления (с) Максим Климов

Реальные ТТХ зарубежных торпед (преднамеренно занижаемых некоторыми отечественными «специалистами») и их «комплексная характеристика»

Массо-габаритные и транспортные характеристики современных зарубежных торпед калибра 53 см в сравнении с нашими экспортными торпедами УГСТ и ТЭ2:


При сравнении отечественных и зарубежных торпед очевидно, что если для УГСТ имеется некоторое отставание от западных образцов по ТТХ, то для это ТЭ2 отставание по ТТХ очень велико.

Учитывая закрытость информации по современных системам самонаведения (ССН), управления (СУ) и телеуправления (СТУ) целесообразно для их оценки и сравнения обозначить основные поколения развития послевоенного торпедного оружия:

1 — прямоидущие торпеды.

2 — торпеды с пассивными ССН (50-е годы).

3 — внедрение активных высокочастотных ССН (60-е годы).

4 — низкочастотные активно-пассивные ССН с допплеровской фильтрацией.

5 — внедрение вторичной цифровой обработки (классификаторов) с массовым переходом (тяжелых торпед) на шланговое телеуправление.

6 — цифровые ССН с увеличенным частотным диапазоном.

7 — сверхширокополосные ССН с оптоволоконным шланговым телеуправлением.

Торпеды, стоящие на вооружении ВМС стран Латинской Америки

В связи с закрытостью ТТХ новых западных торпед представляет интерес их оценка.

Торпеда Mk48

Известны транспортные характеристики первой модификации Mk48 — mod.1 (см. табл. 1).

Начиная с модификации mod.4, была увеличена длина топливного резервуара (430 кг топлива ОТТО II вместо 312), что уже дает увеличение дальности хода на скорости 55 уз свыше 25 км.

Кроме того, первая конструкция водомета была разработана американскими специалистами еще в конце 60х годов (Mk48 mod.1), КПД водомета разрабатывавшейся чуть позднее нашей торпеды УМГТ-1 составлял 0,68. В конце 80х годов после длительной отработки водомета новой торпеды «Физик-1» его КПД был увеличен до 0,8. Очевидно, что американские специалисты проводили аналогичные работы, с повышением КПД водомета торпеды Mk48.

С учетом этого фактора и увеличения длины топливного резервуара, заявления разработчиков о достижении дальности 35 км на скорости 55 уз для модификаций торпеды с mod.4 представляются обоснованными (и многократно подтвержденными по линии экспортных поставок).

Заявления некоторых наших специалистов о «соответствии» транспортных характеристик новейших модификаций Mk48 ранним (mod.1) направлены на маскировку отставания по транспортным характеристикам торпеды УГСТ (что обусловлено нашими жесткими и необоснованными требованиями по безопасности, заставивших ввести камортный топливный резервуар ограниченного объема).

Отдельный вопрос — максимальная скорость последних модификаций Mk48.

Логично предположить увеличение достигнутой с начала 70-х годов скорости 55 уз до «не менее 60», хотя бы за счет увеличения КПД водомета новых модификаций торпеды.

При анализе транспортных характеристик электрических торпед необходимо согласиться с выводом известного специалиста ЦНИИ «Гидроприбор» А.С. Котова «электрические торпеды превзошли по транспортным характеристикам тепловые» (для электрических с батареями AlAgO и тепловых на топливе ОТТО II). Выполненная им расчётная провека данных по торпеде DM2A4 с AlAgO батареей (50 км на 50 уз) оказалась близкой к заявленной разработчиком (52 уз на 48 км).

Отдельный вопрос — тип используемых в DM2A4 батарей. «Официально» в DM2A4 установлены батареи AgZn, в связи с чем некоторые наши специалисты принимают расчетные характеристики этих батарей как аналогов отечественных. Однако представителями фирмы-разработчика заявлялось, что производство батарей для торпеды DM2A4 в Германии невозможно по экологическим соображениям (завод в Греции), что явно говорит о существенно иной конструкции (и характеристиках) батарей DM2A4 в сравнении с отечественными батареями AgZn (не имеющими особых производственных ограничений по экологии).

Несмотря на то что батареи AlAgO имеют рекордные показатели по энергетике, сегодня в зарубежном торпедизме появилась устойчивая тенденция применения значительно менее энергоемких, но обеспечивающих возможность массовых торпедных стрельб универсальных литий-полимерных батарей (торпеды Black Shark (калибра 53 см) и Black Arrow (32 см) фирмы WASS), — даже ценой существенного снижения ТТХ (снижение дальности на максимальной скорости примерно вдвое от DM2A4 для Black Shark).

Массовые торпедные стрельбы — это аксиома современного западного торпедизма.

Причина этого требования — сложные и изменчивые условия среды, в которой применяются торпеды. «Унитарный прорыв» ВМС США, — принятие на вооружение в конце 60-х — начале 70-х годов торпед Mk46 и Mk48 с резко улучшенными ТТХ, был связан именно с необходимостью много стрелять для отработки и освоения новых сложных систем самонаведения, управления и телеуправления. По своим характеристикам унитарное топливо ОТТО-2 было откровенно средним и уступало по энергетике уже успешно освоенной в ВМС США паре перекись-керосин бо- лее чем на 30%. Но это топливо позволило значительно упростить устройство торпед, а главное — резко, более чем на порядок снизить стоимость выстрела.

Это обеспечило массовость стрельб, успешную доводку и освоение в ВМС США новых торпед с высокими ТТХ.

Приняв на вооружение в 2006-м торпеду Mk48 mod.7 (примерно в одно время с государственными испытаниями «Физик-1»), ВМС США за 2011-2012 годы успели произвести более 300 выстрелов торпедами Mk48 mod.7 Spiral 4 (4-я модификация программного обеспечения 7-й модели торпеды). Это не считая многих сотен выстрелов (за это же время) предшествующих «модов» Mk48 из модификаций последней мо- дели (mod.7 Spiral 1-3).

ВМС Великобритании в период испытаний торпеды StingRay mod.1 (серия с 2005 г.) провели 3 серии стрельб:

Первая — май 2002 г. на полигоне AUTEC (Багамские острова) 10 торпед по ПЛА типа «Трафальгар» (с уклонением и применением СГПД), было получено 8 наведений.

Вторая — сентябрь 2002 г. по ПЛ на средних и малых глубинах и лежащей на грунте (последнее — неудачно).

Третья — ноябрь 2003 г., после доработки программного обеспечения на полигоне BUTEC (Шетландские о-ва) по ПЛА типа «Свифтшур», получено 5 из 6 наведений.

Всего за период испытаний было проведено 150 стрельб торпедой StingRay mod.1.

Однако здесь необходимо учитывать то, что при разработке предшествовавшей торпеды StingRay (mod.0) было проведено около 500 испытаний. Уменьшить это количество стрельб для mod.1 позволила система сбора и регистрации данных всех стрельб, и реализации на ее базе «сухого полигона» для предварительной отработки новых решений ССН на базе этой статистики.

Отдельный и очень важный вопрос — испытания торпедного оружия в Арктике.

ВМС США и Великобритании проводят их на регулярной основе в ходе периодических учений ICEX с выполнением массовых стрельб торпедами.

Например, в ходе ICEX-2003, ПЛА Коннектикут» в течение 2-х недель выпустила, а персонал станции ICEX-2003 извлек из-подо льда 18 торпед АДСАР.

В ряде испытаний ПЛА «Коннектикут» атаковала торпедами имитатор цели, предоставленный Центром подводной войны ВМС США (NUWC), но в большинстве случаев, ПЛА, пользуясь способностью дистанционного управления оружием, (телеуправлением) использовал себя в качестве цели для собственных торпед.



Страница учебника «Торпедиста 2 класса ВМС США» с описанием оборудования и технологии переприготовления торпеды Mk 48

В ВМС США огромный (в сравнении с нами) объем торпедных стрельб обеспечивается не за счет финансовых затрат (как заявляется некоторыми «специалистами»), а именно благодаря малой стоимости выстрела.

Из-за высокой стоимости эксплуатации торпеда Mk50 из боекомплекта ВМС США была выведена. Цифры стоимости выстрела торпедой Mk48 в открытых зарубежных СМИ отсутствуют, но очевидно что они гораздо ближе к $12 тыс. — Mk46, чем к $53 тыс. — Mk50, по данным 1995 г.

Принципиальным вопросом для нас сегодня являются сроки разработки торпедного оружия. Как показывает анализ западных данных, он не может быть менее 6 лет (реально — больше):

Великобритания:

. модернизация торпеды Sting Ray (mod.1), 2005 г. разработка и испытания заняли 7 лет;

. модернизация торпеды Spearfish (mod.1) осуществляется с 2010 г. на вооружение планируется в 2017 г.

Сроки и этапы разработки торпед в ВМС США приведены на схеме.


Таким образом, заявления некоторых наших специалистов о «возможности разработки» новой торпеды за «3 года» не имеют под собой никаких серьезных оснований и являются сознательным обманом командования ВМФ и ВС РФ и руководства страны.

Исключительно важным в западном торпедостроении является вопрос малошумности торпед и выстрела.

Сравнение внешних шумов (со стороны кормы) торпеды Мк48 mod.1 (1971 г.) с уровнем шума атомных подводных лодок (вероятно типов «Пермит», «Стерджен» конца 60х годов) на частоте 1,7 кГц:

При этом необходимо учитывать, что шумность новых модификаций торпеды Mk48 на малошумном режиме движения должна быть значительно меньше NT-37C и быть гораздо ближе к DM2A3.

Главным же выводом из этого является возможность выполнения скрытных торпедных атак современными зарубежными торпедами с больших дальностей (свыше 20-30 км).

Стрельба на большие дальности невозможна без эффективного телеуправления (ТУ).

В зарубежном торпедостроении задача создания эффективного и надежного телеуправления была решена в конце 60-х годов с созданием шланговой лодочной катушки ТУ, обеспечившей высокую надежность, значительное снижение ограничений по маневрированию ПЛ с ТУ, многоторпедные залпы с ТУ.


Шланговая катушка телеуправления германской 533-мм торпеды DM2A1 (1971 г.)

Современные западные шланговые системы телеуправления имеют высокую надежность и практически не налагают ограничений на маневрирование ПЛ. Для исключения попадания провода телеуправления в винты на многих зарубежных ДЭПЛ на кормовых рулях натянуты защитные троса. С высокой вероятность можно предположить возможность телеуправления вплоть до полных ходов ДЭПЛ.


Защитные троса на кормовых рулях итальянской неатомной подводной лодки Salvatore Todaro германского проекта 212А

Шланговая катушка телеуправления не только не является «секретом» для нас, но в начале 2000-х ЦНИИ «Гидпроприбор» разработал и сдал ВМС Китая для изделия 211ТТ1 шланговую ЛКТУ.

Еще полвека назад на западе было осознанно что оптимизация параметров составных частей торпедного комплекса должны осуществляться не по отдельности (составных частей), а с учетом обеспечения максимальной эффективности именно как комплекса.

Для этого на западе (в отличие от ВМФ СССР):

. начались работы по резкому снижению шумности торпед (в т.ч. на низких частотах — рабочих для ГАС ПЛ);

. применены высокоточные приборы управления, обеспечившие резкое повышение точности движения торпед;

. требования к ТТХ ГАК ПЛ были уточнены с для эффективного применения телеуправляемых торпед на большие дистанции;

. автоматизированная система боевого управления (АСБУ) была глубоко интегрирована с ГАК или стала его частью (для обеспечения обработки не только «геометрической» информации стрельбовых задач, но и помехо-сигнальной)

Не смотря на то что все это внедрялось в ВМС зарубежных стран с начала 70-х годов прошлого века, нами это не осознано до сих пор!

Если на западе торпеда — это высокоточный комплекс для скрытного поражения целей с большой дистанции, то у нас до сих пор «торпеды — оружие ближнего боя».

Эффективные дистанции стрельбы западными торпедами составляют примерно 2/3 длины провода телеуправления. С учетом 50-60 км на торпедных катушках, обычных для современных западных торпед, эффективные дистанции получаются до 30-40 км.

При этом эффективность отечественных торпед даже с телеуправлением на дистанциях более 10 км резко снижается из-за низких ТТХ телеуправления и малой точности устаревших приборов управления.

Некоторые специалисты утверждают, что дистанции обнаружения ПЛ якобы малы и поэтому «большие эффективные дистанции не нужны». С этим нельзя согласиться. Даже при столкновении на «кинжальной дистанции», в процессе маневрирования в ходе боя весьма вероятно увеличение дистанции между ПЛ (а ПЛА ВМС США специально отрабатывали «разрыв дистанции» с уходом за эффективные залповые дистанции наших торпед).

Разница в эффективности зарубежного и отечественного подхода — «снайперская винтовка» против «пистолета», а с учетом того что дистанцию и условия боя определяем не мы — результат этого «сравнения» в бою очевиден — в большинстве случаев нас ждет расстрел (в т.ч. при наличии в боекомплекте наших ПЛ «перспективных» (но с устаревшей идеологией) торпед).

Кроме того, необходимо также развеять заблуждение некоторых специалистов о том что «торпеды не нужны против надводных целей, т.к. есть ракеты». С момента выхода из воды первой ракеты (ПКР) ПЛ не просто теряет скрытность, а становится объектом атаки авиационных противолодочных средств противника. С учетом их высокой эффективности, залп ПКР ставит ПЛ на грань уничтожения. В этих условиях возможность выполнения скрытной торпедной атаки надводных кораблей с больших дистанций становится одним из требований к современным и перспективным ПЛ.

Очевидно, что необходимы серьезные работы по устранению имеющихся проблем отечественных торпед, в первую очередь НИР по тематике:

. современных помехоустойчивых сверхширокополосных ССН (при этом крайне важна совместная отработка ССН и новых средств противодействия);

. высокоточных приборов управления;

. новых батарей торпед — как мощных одноразовых, так и многоразовых литий-полимерных (для обеспечения большой статистики стрельб);

. оптоволоконного высокоскоростного телеуправления, обеспечивающего многоторпедные залпы на дистанции в несколько десятков км;

. скрытности торпед;

. интеграции «борта» торпед и ГАК ПЛ для комплексной обработки помехо-сигнальной информации;

. разработки и проверки стрельбами новых способов применения телеуправляемых торпед;

. проведение испытаний торпед в условиях Арктики.

Все это безусловно требует большой статистки стрельбы (сотни и тысячи выстрелов), и на фоне нашей традиционной «экономии» это кажется на первый взгляд нереальным.

Однако требование наличия в составе ВМФ РФ подводных сил означает и требование современного и эффективного их торпедного оружия, а значит всю эту большую работу необходимо делать.

Необходимо устранение имеющегося отставания от развитых стран в торпедном оружии, с переходом на общепринятую в мире идеологию торпедного оружия ПЛ как высокоточного комплекса, обеспечивающего поражение скрытное целей с больших дистанций.

Максим Климов

АРСЕНАЛ ОТЕЧЕСТВА | №1 (15) / 2015

На фото в заголовке — китайская 533-мм торпеда Yu-6. Ну как китайская — на самом деле это торпеда 211ТТ1, разработанная на китайские деньги российским ЦНИИ «Гидроприбор», и оснащенная российской же шланговой лодочной катушкой телеуправления (которой на отечественных торпедах нет до сих пор, поскольку это разработка опять же на китайские деньги).

Начнем с истории. В далеком 1964 году ВМФ СССР, еще не впавший в окончательный маразм, провёл конкурс эскизных проектов перспективной универсальной торпеды УСТ — как тепловой, так и электрической. Несмотря на то, что ТТХ тепловой на глубинах до 600 м получались существенно выше электрической, для дальнейшей разработки, под предлогом скорого появления в ВМС США ПЛА с глубиной погружения до 1000 м, была принята электрическая торпеда. Образцом для ее батареи послужила выловленная американская торпеда Mk-44 с батареей, активируемой морской водой.

В период 1964-1980гг. были разработаны и приняты на вооружение электрические торпеды с ВХИТ — СЭТ-72 (40уз, 8 км), УМГТ-1 (41 уз, 8 км), УСЭТ-80 (скорость свыше 45 уз, 18 км). Анодным материалом ВХИТ явля­ется специальный сплав на основе магния, а катодным — хлорид серебра. В последствии на основании результатов совместных работ ЦНИИ «Гид­роприбор» и ВНИАИ катодный материал заменен на хлорид меди.

Выбор «электрического направления» развития универсальных торпед ВМФ в СССР привел к:

  1. заведомому значительному отставанию универсальных торпед ВМФ от торпед ВМС США по скорости, дальности, эффективным позициям залпа
  2. большому весу торпед
  3. высокой стоимости торпедного оружия ВМФ
  4. ограниченным сроком службы батарей торпед (не более полутора десятка лет)
  5. снижению ТТХ торпед в процессе эксплуатации (свойственно всем электрическим торпедам)
  6. из-за малой солености исключалось применение новых торпед в Балтийском море
  7. зависимость мощности от условий, ставящей под сомнение «официальные ТТХ»

Вот вам цитата из книжки «Такова торпедная жизнь» Гусев Р.А. 2004г.

«СЭТ-72…В боевой комплектации произведено около двадцати выстрелов. … Условий, при которых промышленность обещала скорость хода 40 узлов нигде обнаружить не удалось. Имеем некоторый недобор по скорости хода. »

В торпедах различают следующие условные поколения по применяемым технологиям:

1 - прямоидущие торпеды.
2 - торпеды с пассивными ССН (50-е годы).
3 - внедрение активных высокочастотных ССН (60-е годы).
4 - низкочастотные активно-пассивные ССН с допплеровской фильтрацией.
5 - внедрение вторичной цифровой обработки (классификаторов целей) с массовым переходом тяжелых торпед на шланговое телеуправление.
6 - цифровые ССН с увеличенным частотным диапазоном.
7 - сверхширокополосные ССН с оптоволоконным шланговым телеуправлением.

С водометами как пропульсивным движетелем для торпеды ситуация следующая: первая конструкция водомета была разработана американскими специалистами еще в конце 60-х годов (для торпеды Mk48 mod.1). Преимущества водомета над соосными винтами очевидны — он тупо тише работает, ну и проблема захлестывания кабеля телеуправления для водомета на порядок меньше, чем для открытых винтов. Однако есть и недостатки — главный из которых более низкий КПД водомета по сравнению с соосными винтами. КПД водомета разрабатывавшейся чуть позднее американцев (на основе передирания стыренной американской торпеды) нашей торпеды УМГТ-1 составлял 0,68. В конце 80х годов после длительной отработки водомета новой торпеды «Физик-1» (УГСТ) его КПД был увеличен до 0,8 — что всё равно хуже, чем у пиндосов, но уже незначительно.

Вы спросите — а отчего впрямую не передрать геометрию пиндосского водомёта? Вот и в Гидроприборе так думали, когда делали торпеды. Меня искренне развеселил этот подход. Академики не вкурили в известный парадокс масштаба. Мк48 весит 1800 кг, а наша УГСТ — более 2200 кг. Если на нее поставить американский водомёт — будем иметь недобор тяги, и соответственно скорости. Пропорционально увеличить размер? Именно это в Гидроприборе и сделали — забыв, что одновременно надо было бы пропорционально снизить плотность воды. И даже рухнувший КПД не открыл им глаза на суть проблемы. Только в 80-е один выскочка им рассказал, в чем дело — и дело двинулось.

Интересно, что стараниями немцев в битве тепловых торпед с электрическими сейчас достигнут относительный паритет. Немецкие электрические торпеды Atlas DM2A4 с одноразовой батареей на основе AlAgO имеют энергетику, близкую к тепловым торпедам таких же массогабаритов (американским Mk48 ADCAP) на однокомпонентном топливе.

Однако такое решение — батареи на AlAgO — чудовищно дорогое, а главное — не подходит для практических стрельб. Поэтому офциально на экспорт немцы поставляют торпеды DM2A4 с более дешевыми батареями AgZn (серебряно-цинковыми), соответственно их ТТХ совсем не такие высокие, как заявлено для торпед немецкого флота. Российские электроторпеды также используют одноразовые батареи на технологии AgZn (скопированы с американских 60-х годов) — что и предопределило их низкую энергетику.

Хуже того — в СССР проспали тот факт, что массовые торпедные стрельбы - это аксиома современного западного торпедизма. В то время как на западе была сделана ставка на торпеды, пригодные для организации недорогих многоразовых практических стрельб — в СССР это никого сильно не волновало. Торпеды упорно проектировали так же, как ракеты — в расчете на единственный «полёт».

Причина требования массовости стрельб - сложные и изменчивые условия среды, в которой применяются торпеды. Так называемый «унитарный прорыв» ВМС США - принятие на вооружение в конце 60-х - начале 70-х годов вместо электрических торпед тепловых торпед Mk46 и Mk48 с резко улучшенными ТТХ, был связан именно с необходимостью много стрелять для отработки и освоения новых сложных систем самонаведения, управления и телеуправления. По своим характеристикам унитарное топливо ОТТО-2 было откровенно средним и уступало по энергетике уже успешно освоенной в ВМС США паре перекись-керосин более чем на 30%. Но это топливо позволило значительно упростить устройство торпед, а главное - резко, более чем на порядок снизить стоимость выстрела. Это обеспечило массовость стрельб, успешную доводку и освоение в ВМС США новых торпед с высокими ТТХ.

Приняв на вооружение в 2006-м торпеду Mk48 mod.7 (примерно в одно время с государственными испытаниями «Физик-1»), ВМС США за 2011–2012 годы успели произвести более 300 выстрелов торпедами Mk48 mod.7 Spiral 4 (4-я модификация программного обеспечения 7-й модели торпеды). Это не считая многих сотен выстрелов (за это же время) предшествующих «модов» Mk48 из модификаций последней модели (mod.7 Spiral 1-3).

Понятное дело, что России ничего подобного и не снилось по очень многим причинам, в том числе по причине малопригодности наших торпед к многократным пускам.

В электрических торпедах у нас стоят двигатели, которые в конце дистанции разогреваются до 600-650 градусов и более, железо магнитопроводов светится вишневым цветом, а щетки искрят так, что за один пуск выедают половину толщины коллектора (между прочим, такой форсаж режимов двигателя приводит к чудовищной интенсивности помех в бортовой электросети торпеды), да и одноразовые батареи очень дороги — как следствие, для практических стрельб в СССР применялись более дешевые многоразовые свинцовые аккумуляторы с пониженным напряжением батареи, что позволяло продлить срок службы двигателя — но резко снижало скорость и дальность хода торпед, превращая тренировочные стрельбы в нереалистичную клоунаду. Только сейчас стараниями «Дагдизеля» и ЮФУ был создан бесщеточный мотор ВДПМ, который имеет хорошую долговечность, значительно лучший КПД, низкий уровень помех, и позволяет (если использовать литий-полимерные аккумуляторы) получить действительно многоразовую электроторпеду для недорогих практических стрельб.

Между прочим, несмотря на то, что батареи AlAgO имеют рекордные показатели по энергетике, сегодня в зарубежном торпедизме появилась устойчивая тенденция применения значительно менее энергоемких, но обеспечивающих возможность массовых торпедных стрельб универсальных литий-полимерных аккумуляторов (например, на них переводятся популярные торпеды Black Shark калибра 53 см и Black Arrow 32 см фирмы WASS), - даже ценой существенного снижения ТТХ (снижение дальности на максимальной скорости примерно вдвое).

Чтобы вы поняли, как важно иметь массовые стрельбы для отработки конструкции торпед, расскажу вам простую историю: ВМС Великобритании в период испытаний торпеды StingRay mod.1 (массовый выпуск с 2005 г.) провели 3 серии стрельб:

Первая - май 2002 г. на полигоне AUTEC (Багамские острова) 10 торпед по ПЛА типа «Трафальгар» (с уклонением и применением СГПД), было получено 8 наведений.
Вторая - сентябрь 2002 г. по ПЛ на средних и малых глубинах и лежащей на грунте (последнее - неудачно).
Третья - ноябрь 2003 г., после доработки программного обеспечения на полигоне BUTEC (Шетландские о-ва) по ПЛА типа «Свифтшур», получено 5 из 6 наведений.
Всего за период испытаний было проведено 150 стрельб торпедой StingRay mod.1. Причем необходимо учитывать то, что при разработке предшествовавшей торпеды StingRay (mod.0) было проведено около 500 стрельб.

Таким образом, экономические показатели эксплуатации торпед являются очень важным требованием, и прямо влияют на качество доводки и освоения торпед на флоте, и соответственно на возможность раскрытия полных ТТХ, заложенных в конструкцию торпед. Применяют-то их люди, и если люди плохо знают возможности оружия — результат будет далек от оптимального.

Фундаментом массовых торпедных стрельб в ВМС США является малая стоимость выстрела, получаемая в том числе благодаря участию флота в эксплуатации (переприготовлении) торпед. Последнее является принципиальным вопросом. Некоторыми нашими специалистами еще в 90-х годах был выдвинут ничем не обоснованный тезис, что якобы «на западе ВМС торпеды не эксплуатирует, а всё делает промышленность». Ложность этого тезиса подтверждают документы ВМС США, наиболее наглядно - учебник торпедиста 2 класса (находится в свободном доступе). Вот вам страница учебника «Торпедиста 2 класса ВМС США» с описанием оборудования и технологии переприготовления торпеды Mk 48:


Между прочим, тут хорошо видна разница между нашими и американскими подходами к конструированию. «Американку» можно разнять на отсеки, сохранив практически все соединения и способность узлов к функционированию. Советская тепловая торпеда при таком рассоединении полностью нефункциональна.

В ВМС США огромный (в сравнении с нами) объем торпедных стрельб обеспечивается не за счет финансовых затрат (как заявляется некоторыми «специалистами»), а именно благодаря малой стоимости выстрела. Например, торпеда Mk50 из боекомплекта ВМС США была выведена именно из-за высокой стоимости эксплуатации — для нее стоимость пуска (с учетом работы торпедолова и последующей перезарядки) составляла около 53K$, и это сочли неприемлимо дорогим, ведь для Mk46 стоимость пуска всего 12K$ (данные 1995 года). Стоимость пуска для более тяжелой Mk48 повыше, чем для Mk46 — но далеко не в разы.

Кстати, вы вообще знаете, сколько стоит современная торпеда? Держитесь за стул — 5 миллионов долларов и более. Дороже, чем танк Т-90А со всеми потрохами. Стрелять такими штуками одноразово — это экономическое безумие. Тем не менее в СССР именно этим и занимались.

Ну ладно, ладно — вот вам реальная госзакупка 253/08/02 (2008г.) – на поставку 15 торпед УСЭТ-80 общей стоимостью 421 874 тыс. рублей. Да-да — 421 миллион рублей, по 28 миллионов (тогда это было около миллиона баксов) за торпеду. И я вам открою секрет — никто не обещал, что за такую цену эти торпеды 100% новодел. Это были перебранные торпеды из остатков.

Сроки и этапы разработки торпед в ВМС США приведены на схеме:


Слава Богу, ввиду деградации технологий и нехватки денег они эти сроки сорвут — но надо понимать, что и наши прожектёры, обещающие «создать новую торпеду за 3 года», врут как дышат. За 3 года можно создать только туфту из старых агрегатов, некий ходовой макет, не имеющий набора существенных преимуществ.

Между прочим, закупка новых торпед ВМС США не производилась с 1993г. до 2006г. Однако, благодаря модернизационным комплектам, даже новейшая торпеда Mk-48 mod.7 может быть получена доработкой старых модификаций Mk-48. Серийное производство торпед Mk 48 Mod 7 было начато в июне 2006 г. — но сложно сказать, насколько это производство реальное, а не модернизация торпед, взятых с хранения.

Кстати, по шумности торпед — ситуация такая: Mk48 шумит на 40 узлах хода примерно так же, как АПЛ на 15 узлах. Это со стороны кормы — со стороны носа, конечно же, гораздо меньше. Близкий уровень шумности имеет и российская УГСТ.

Главным выводом из этого является возможность выполнения скрытных торпедных атак современными торпедами с больших дальностей (свыше 20–30 км). В этом случае цель не слышит момент пуска, и соответственно обнаруживает торпеду лишь тогда, когда она подберется близко.

Однако эффективная стрельба на такие большие дальности невозможна без телеуправления (ТУ).

В зарубежном торпедостроении задача создания эффективного и надежного телеуправления была решена в конце 60-х годов с созданием шланговой лодочной катушки ТУ, обеспечившей высокую надежность, значительное снижение ограничений по маневрированию ПЛ с ТУ, многоторпедные залпы с ТУ.

Вот вам для примера шланговая катушка телеуправления германской 533-мм торпеды DM2A1 (1971 г.):


В конце 60х годов на западе пришли к шланговой лодочной катушке телеуправления, остававшейся при выстреле на задней крышке ТА. При этом стравливание провода для компенсации послезалпового маневрирования ПЛ производилось через защитный «шланг». Шланговое телеуправление позволило резко повысить надежность связи, уменьшить ограничения по скорости и маневрированию ПЛ при телеуправлении, обеспечить стрельбу многоторпедными залпами с телеуправлением в т.ч. на самых малых глубинах. В результате – повысилась эффективность торпедного оружия ПЛ и значительно увеличились позиции стрельбы по дистанции.

Все необходимые проработки шланговой катушки были сделаны и у нас, однако на пути внедрения встал флот. Необходимость после выстрела снять с задней крышки ТА катушку и удалить из торпедного аппарата «шланг» требовало ручной работы матроса. В ТТЗ ВМФ жестко стояло требование автоматической перезарядки ТА, выполнимое лишь в случае буксируемой катушки.

(Я, кстати, никогда не понимал этой проблемы — что мешает двигать катушку в аппарате вместе с торпедой, как поршень, почти до среза аппарата — где ее и задержать тросом в рабочем положении, а потом, после исчерпания надобности, отстрелить трос от крышки аппарата и вытолкнуть катушку из лодки той же системой, которая выталкивает торпеду).

Новая (экспортная) торпеда УГСТ разрабатывалась по ТТЗ ВМФ, поэтому там однозначно должна была быть установлена буксируемая катушка. Пытаясь хоть как-то улучшить конструкцию, разработчики создали новую БЛК, разместив ее вертикально. Но все недостатки буксируемой схемы остались.

Между тем даже кратковременное телеуправление резко повышает эффективность залпа по ПЛ в реальных условиях, а возможность реализации позиций стрельбы по надводным кораблям, следующим противоторпедным зигзагом, на дистанции свыше 11-13 км возможна только с телеуправлением.

Ну и в завершение — вот вам привет из прекрасного СССР, П.Колядин «Записки военпреда»:

Вот я, как районный военпред, подписываю стоимость торпеды 53-65К в сумме 21000 руб. А стоимость УСЭТ-80 — 360 000 руб. Одна серебряная батарея стоит порядка 70 000 руб., т.е. 3 торпеды тепловых. А ведь тепловую торпеду с теми же ТТХ (многоцелевую) Вы могли бы спроектировать и на порядок дешевле, выгоднее для страны!

Конструкторы Филиала по сжиганию твердого гидрореагирующего топлива были первопроходцами в торпедостроении, а это было связано с поисками разных по скорости горения топлив и в связи с этим конструкций камеры сгорания и всей ЭСУ.

Более 10 лет ушло на эти изыскания: с 1970 года по 1975 год отработка горения проводилась на медленно-горящем топливе (МГРТ), а с 1975 года перешли на быстрогорящее (БГРТ) с высокой скоростью горения (40 мм/сек, вместо 5-6 мм/сек.). Это повлекло за собой коренную перекомпоновку всего энергоотсека и конструкции парогенератора. Энергоотсек стал состоять из шести стволов, в каждом из которых размещалось три последовательно состыкованных заряда БГРТ, длиной в 1 м. и диаметром 154 мм (длина заряда обуславливалась его транспортировочной прочностью).

В конечном итоге была выбрана агрегатная схема торпеды, состоящая из 2-х контуров:

— замкнутого по рабочему телу (цикл Ренкина: водяной пар-конденсат), состоящего из питательного насоса, прямоточного парогенератора и последовательно включенных агрегатной и маршевой турбин, а также конденсатора;

— открытого, состоящего из насоса морской воды, подающего воду в камеру сгорания и на передвижение топливной шашки, камеры сгорания, газового тракта парогенератора, подогревателя воды, поступающего в камеру сгорания, и профилированного сопла на выходе из парогенератора за борт. Образно говоря, торпеда была спроектирована по аналогии с живым организмом: открытого по продуктам питания тракт и замкнутый по кровообращению. Одним словом, была спроектирована ЭСУ на очень высоких параметрах пара (перегретого) до 100 атм. давления.

Стендовые результаты дали основание приступить к морским испытаниям УГСТ. К этому времени специально для проведения морских испытаний УГСТ Ю.М. Красных разработал систему измерений параметров движущейся торпеды с борта стреляющего корабля по проводной линии связи системы телеуправления — система ТИС-1. Но возникли непредвиденные обстоятельства. Чем ближе конструкторы продвигали работы к морским испытаниям, тем сильнее было давление 4ГУ МСП по приостановке работ. Опытная партия торпед УГСТ изготавливалась на заводе им. СМ. Кирова в Алма-Ате.

Параллельно в производстве была ОКР «Шквал». Две опытные, очень сложные разработки. Начальник Главка распорядился изготовлению ОКР «Шквал» дать «зеленую улицу» в ущерб изготовлению ОКР «Тапир». Такое распоряжение явно было нацелено на срыв разработки ОКР. Ко мне обратился с просьбой Панов Алексей Александрович, директор Филиала, с просьбой помочь в изготовлении опытной партии. Сроки поджимали. Мною были приняты меры, согласно которым, изготовление опытной партии завершено в 1983 году, матчасть была подана в г. Феодосию на испытания.

Получив материальную часть на пристрелочную станцию в г. Феодосию, группа главного конструктора форсировала испытания. С 1983 по 1985 годы было проведено 24 пуска торпеды. В 1985 году в сентябре был запланирован пуск на полную дальность торпеды. На этот пуск собралась вся группа главного конструктора, в составе которой был и я, вновь назначенный старший военпред на Филиале.

Работа проводилась из торпедного аппарата испытательного судна на скоростном режиме торпеды с проверкой переключения горения с одного ствола на другой, с определением при этом внешней шумности и визуальной следности торпеды.

Торпеда без следа преодолела заданную дистанцию с минимальным внешним шумом, по команде «стоп» разделилась, сбросила остатки горящего топлива, ПЗО всплыло, а затонувшую матчасть подняли по отработанной схеме безводолазного подъема. Это был успех! Создатели торжествовали - наконец-то Победа!

На этот пуск были приглашены создатели гидрореагирующего топлива из «Загорска», Главный инженер НИИ «Крылова». Схема и конструкция торпеды поразили приглашенных специалистов компактностью, оригинальностью, надежностью работы схемы, созданной впервые в торпедном объеме с такими параметрами..

Высокой комиссии я доложил, что в Феодосии на полигоне выполнена впервые в мире полномасштабная стрельба тепловой торпеды с замкнутым циклом (до глубины 1000 м.). Полученные данные свидетельствуют о высоких ТТХ: торпеда бесследная, внешние шумы на порядок меньше, чем у серийных торпед, скорость и дальность достигают величин, указанных в ТТЗ. Торпеда показала и модернизационные возможности по улучшению своих ТТХ и одним из главных достоинств является ее универсальность, нахождение на кораблях в боекомплекте по времени больше, чем у всех существующих серийных торпед, чем обеспечивается продолжительность плавания носителей. Кроме того, выразил свое личное положительное отношение к этой разработке, акцентировав ее универсальность, как тепловой торпеды на максимальную глубину и оригинальность конструкции, впервые применяемую в мировом торпедостроении.

Однако отрицательное отношение к разработке со стороны МСП продолжала нарастать и сопровождалась увеличением сторонников приостановить эту разработку. О борьбе, которая происходила в верхних сферах Министерства и ВМФ свидетельствует такой фактор, очевидно, как заключительный этап противоборства.

Мне позвонил директор завода им. С.М.Кирова из Алма-Аты Шнурников В.А. и сообщил, что Начальник 4 Главка потребовал от него представить сравнительные сведения по трудоемкости серийной торпеды 53-65К и новой разработки «Тапир». Директор негодовал, что эти сведения будут не объективны, т.к. серийная торпеда 53-65 в производстве уже несколько лет, а опытно-конструкторская в серию еще не принята и, естественно, ее трудоемкость будет заведомо больше, чем у серийной. Тем не менее директор выполнил указание и дал сведения: трудоемкость изготовления торпеды 53-65К в серийном производстве - 5500 нормо/часов, а трудоемкость опытной УГСТ — 7800 нормо/часов! Через пару дней опять звонок Шпурникова В.А. Он сообщил, что Начальник Главка приказал отозвать предыдущие сравнительные сведения по трудоемкости и дать другие, в которых трудоемкость новой разработки была бы на порядок больше. Шнурников В.А. дал, как просил Начальник, 55 000 нормо/часов , прокомментировав мне: «как приказали!».

Вот такими силовыми приемами со стороны Министерства разработка сначала была переведена из опытно-конструкторской в научно-исследовательскую, а затем и вообще прекращена!

Мой доклад в УПВ вице-адмиралу Бутову С.А. не оказал существенно на принятие решения по судьбе уникальной разработки; она была закрыта.

Нынешняя УГСТ полностью копирует схему силовой установки Мк-48 — такое же топливо, такой же двигатель. Эту схему можно было передрать еще в начале 70-х — но тогда клоуны из верхушки (ЦК и МСП) требовали «опередить американцев». А когда опережение стало получаться — срочно начали педалировать тупиковые разработки, вроде «Шквала», и срывать прогрессивные. Вот таким был реальный СССР.

Торпеда (от лат. torpedo narke - электрический скат , сокращённо лат. torpedo ) - самодвижущееся устройство, содержащее взрывчатый заряд и служащее для уничтожения надводных и подводных целей. Появление торпедного оружия в XIX веке коренным образом изменила тактику ведения боевых действий на море и послужило толчком для разработки новых типов кораблей , несущих торпеды в качестве главного вооружения .

Торпеды различных типов. Военный музей на батарее Безымянной, Владивосток.

История создания

Иллюстрация из книги Джованни де ла Фонтана

Как и множество других изобретений, изобретение торпеды имеет сразу несколько отправных точек. Впервые идея использовать специальные снаряды для уничтожения вражеских кораблей описана в книге итальянского инженера Джованни де ла Фонтана (итал. Giovanni de la Fontana ) Bellicorum instrumentorum liber, cum figuris et fictitys litoris conscriptus (рус. «Иллюстрированная и зашифрованная книга инструментов войны» или иначе «Книга о военных принадлежностях» ). В книге приведены изображения различных устройств военного назначения, передвигающихся по земле, воде и воздуху и приводимых в движение за счет реактивной энергии пороховых газов.

Следующим событием, предопределившем появление торпеды, стало доказательство Дэвидом Бушнеллом (англ. David Bushnell ) возможности горения пороха под водой. Позже Бушнелл попытался создать первую морскую мину, оснащенную изобретенным им же часовым взрывным механизмом, но попытка ее боевого применения (как и изобретенной Бушнеллом подводной лодки "Черепаха") оказалась безуспешной.
Очередной шаг по пути к созданию торпед был сделан Робертом Фултоном(англ. Robert Fulton ), создателем одного из первых пароходов. В 1797 году он предложил англичанам использовать дрейфующие мины, оснащенные часовым взрывным механизмом и впервые использовал слово торпе́до для описания устройства, которое должно было взрываться под днищем и таким образом уничтожать вражеские корабли. Это слово было использовано из за способности электрических скатов(лат. torpedo narke ) оставаться незамеченными, а затем стремительным броском парализовать свою жертву.

Шестовая мина

Изобретение Фултона не являлось торпедой в современной понимании этого слова, а являлось заградительной миной . Такие мины широко использовались российским флотом во время Крымской войны на Азовском, Черном и Балтийском морях. Но такие мины были оборонительным оружием. Появившиеся чуть позже шестовые мины стали оружием наступательным. Шестовая мина представляла из себя взрывчатку, закрепленную на конце длинного шеста, и скрытно доставлявшаяся с помощью лодки к вражескому кораблю.

Новым этапом стало появление буксируемых мин. Такие мины существовали как в оборонительном, так и в наступательном вариантах. Оборонительная мина Гарвея (англ. Harvey ) буксировалась с помощью длинного троса на расстоянии примерно 100-150 метров от корабля вне кильватерной струи и имела дистанционный взрыватель, который приводился в действие при попытке противника протаранить защищаемый корабль. Наступательный вариант, мина-крылатка Макарова также буксировалась на тросе, но при приближении вражеского корабля буксир шел курсом прямо на противника, в последний момент резко уходил в сторону и отпускал трос, мина же продолжала двигаться по инерции и взрывалась при столкновении с кораблем противника.

Последним шагом на пути к изобретению самодвижущейся торпеды стали наброски неизвестного австро-венгерского офицера, на которых был изображен некий снаряд, буксируемый с берега и начиненный зарядом пироксилина. Наброски попали к капитану Джованни Бьяджо Луппису (рус. Giovanni Biagio Luppis ), который загорелся идеей создать самодвижущийся аналог мины для береговой обороны (англ. coastsaver ), управляемой с берега с помощью тросов. Луппис построил макет такой мины, приводимой в движение пружиной от часового механизма, но наладить управление этим снарядом ему не удалось. В отчаянии Луппис обратился за помощью к англичанину Роберту Уайтхеду (англ. Robert Whitehead ), инженеру судостроительной компании Stabilimeno Technico Fiumano в Фиуме (в настоящее время Риека, Хорватия).

Торпеда Уайтхеда


Уайтхеду удалось решить две проблемы, стоявшие на пути его предшественников. Первая проблема заключалась в простом и надежном двигателе, который сделал бы торпеду автономной. Уайтхед решил установить на свое изобретение пневматический двигатель, работающий на сжатом воздухе и приводящий во вращение винт, установленный в кормовой части. Второй проблемой была заметность торпеды, движущейся по воде. Уайтхед решил сделать торпеду таким образом, чтобы она двигалась на небольшой глубине, но на протяжении длительного времени ему не удавалось добиться стабильности глубины погружения. Торпеды либо всплывали, либо уходили на большую глубину, либо вообще двигались волнами. Решить эту проблему Уайтхеду удалось с помощью простого и эффективного механизма - гидростатического маятника, который управлял рулями глубины. реагируя на дифферент торпеды, механизм отклонял рули глубины в нужную сторону, но при этом не позволял торпеде совершать волнообразные движения. Точность выдерживания глубины была вполне достаточной и составляла ±0,6 м.

Торпеды по странам

Устройство торпед

Торпеда состоит из корпуса обтекаемой формы, в носовой части которого находится боевая часть с взрывателем и зарядом взрывчатого вещества. Для приведения в движение самоходных торпед на них устанавливаются двигатели различных типов: на сжатом воздухе, электрические, реактивные, механические. Для работы двигателя на борту торпеды размещается запас топлива: баллоны со сжатым воздухом, аккумуляторы , баки с топливом. Торпеды, оборудованные устройством автоматического или дистанционного наведения оснащаются приборами управления, сервоприводами и рулевыми механизмами.

Классификация

Типы торпед Кригсмарине

Классификация торпед проводится по нескольким признакам:

  • по назначению: противокорабельные; противолодочные; универсальные, используемые против подводных лодок и надводных кораблей.
  • по типу носителя: корабельные ; лодочные ; авиационные ; универсальные; специальные (боевые части противолодочных ракет и самодвижущихся мин).
  • по типу заряда: учебные, без взрывчатого вещества; с зарядом обычного взрывчатого вещества; с ядерным боеприпасом;
  • по типу взрывателя: контактные; неконтактные; дистанционные; комбинированные.
  • по калибру: малого калибра, до 400 мм; среднего калибра, от 400 до 533 мм включительно; большого калибра, свыше 533 мм.
  • по типу движителя: винтовые ; реактивные; с внешним движителем.
  • по типу двигателя: газовые; парогазовые; электрические; реактивные.
  • по типу управления: неуправляемые; автономно управляемые прямоидущие; автономно управляемые маневрирующие; с дистанционным управлением; с ручным непосредственным управлением; с комбинированным управлением.
  • по типу самонаведения: с активным самонаведением; с пассивным самонаведением; с комбинированным самонаведением.
  • по принципу самонаведения: с магнитным наведением; с электромагнитным наведением; с акустическим наведением; с тепловым наведением; с гидродинамическим наведением; с гидрооптическим наведением; комбинированные.

Устройства пуска

Торпедные двигатели

Газовые и парогазовые торпеды

Двигатель Brotherhood

Первые массовые самоходные торпеды Роберта Уайтхеда использовали поршневой двигатель, работавший на сжатом воздухе. Сжатый до 25 атмосфер воздух из баллона через редуктор, понижающий давление, поступал в простейший поршневой двигатель, который, в свою очередь, приводил во вращение гребной винт торпеды. Двигатель Уайтхеда при 100 об/мин обеспечивал скорость торпеды 6,5 узла при дальности 180 м. Для увеличения скорости и дальности хода требовалось увеличивать давление и объема сжатого воздуха соответственно.

C развитием технологии и ростом давления возникла проблема обмерзания клапанов, регуляторов и двигателя торпед. При расширении газов происходит резкое понижение температуры, которое тем сильнее, чем выше разница давлений. Избежать обмерзания удалось в торпедных двигателях с сухим обогревом, которые появились в 1904 году. В трехцилиндровых двигателях Brotherhood, которыми оснащались первые торпеды Уайтхеда с подогревом, для снижения давления воздуха использовался керосин или спирт. Жидкое топливо впрыскивалось в воздух, поступавший из баллона и поджигалось. За счет сгорания топлива давление повышалось, а температура снижалась. Помимо двигателей с сжиганием топлива, позже появились двигатели, в которых в воздух впрыскивалась вода, благодаря чему менялись физические свойства газовоздушной смеси.

Противолодочная торпеда MU90 с водометным двигателем

Дальнейшее совершенствование было связано с появлением паровоздушных торпед (торпед с влажным обогревом), у которых вода впрыскивалась в камеры сгорания топлива. Благодаря этому можно было обеспечить сжигание большего количества топлива, а также использовать пар, образующийся при испарении воды для подачи в двигатель и увеличения энергетического потенциала торпеды. Такая система охлаждения впервые была использована на торпедах British Royal Gun в 1908 году.

Количество топлива, которое может быть сожжено, ограничено количеством кислорода, которого в воздухе содержится около 21%. Для увеличения количества сжигаемого топлива были разработаны торпеды, у которых вместо воздуха в баллоны закачивался кислород. В Японии в годы Второй мировой войны стояла на вооружении кислородная торпеда 61 см Type 93 , самая мощная, дальнобойная и скоростная торпеда своего времени. Недостатком кислородным торпед была их взрывоопасность. В Германии в годы Второй мировой войны велись эксперименты с созданием бесследных торпед типа G7ut на перекиси водорода и оснащенные двигателем Вальтера. Дальнейшим развитием применения двигателя Вальтера стало создание реактивных и водометных торпед.

Электрические торпеды

Электрическая торпеда МГТ-1

Газовые и парогазовые торпеды имеют ряд недостатков: они оставляют демаскирующий след и имеют сложности с длительным хранением в заряженном состоянии. Этих недостатков лишены торпеды с электроприводом. Впервые электродвигателем оснастил торпеду своей конструкции Джон Эрикссон в 1973 году. Питание электродвигателя осуществлялось по кабелю от внешнего источника тока. Аналогичные конструкции имели торпеды Симса-Эдисона и Нордфельда , причем у последней по проводам также осуществлялось управление рулями торпеды. Первой успешной автономной электрической торпедой, у которой электропитание на двигатель подавалось с бортовых аккумуляторных батарей, стала немецкая G7e , широко распространенная в годы Второй Мировой войны. Но эта торпеда имела и ряд недостатков. Ее свинцово-кислотный аккумулятор был чувствителен к ударам, требовал регулярного обслуживания и подзарядки, а так же подогрева перед использованием. Аналогичную конструкцию имела американская торпеда Mark 18 . Экспериментальная G7ep, ставшая дальнейшим развитием G7e, была лишена этих недостатков так как в ней аккумуляторы были заменены на гальванические элементы. В современных электрических торпедах используются высоконадежные не обслуживаемые литий-ионные или серебряные аккумуляторные батареи.

Торпеды с механическим двигателем

Торпеда Бреннана

Механический двигатель впервые был использован в торпеде Бреннана . Торпеда имела два троса, намотанные на барабаны внутри корпуса торпеды. Береговые паровые лебедки тянули троса, которые крутили барабаны и приводили во вращение гребные винты торпеды. Оператор на берегу контролировал относительные скорости лебедок, благодаря чему мог изменять направление и скорость движения торпеды. Такие системы были использованы для береговой обороны в Великобритании в период с 1887 по 1903 годы.
В США в конце XIX века на вооружении состояла торпеда Хауэлла , которая приводилась в движение за счет энергии раскручиваемого перед пуском маховика. Хауэлл также впервые использовал гироскопический эффект для управления курсом движения торпеды.

Торпеды с реактивным двигателем

Носовая часть торпеды М-5 комплекса Шквал

Попытки использовать реактивный двигатель в торпедах предпринимались еще во второй половине XIX века. После окончания Второй мировой войны был предпринят ряд попыток создания ракето-торпед, которые являлись комбинацией ракеты и торпеды. После запуска в воздух ракето-торпеда использует реактивный двигатель, выводящий головную часть - торпеду к цели, после падения в воду включается обычный торпедный двигатель и дальнейшее движение осуществляется уже в режиме обычной торпеды. Такое устройство имели ракето-торпеды воздушного базирования Fairchild AUM-N-2 Petrel и корабельные противолодочные RUR-5 ASROC , Grebe и RUM-139 VLA. В них использовались стандартные торпеды, совмещенные с ракетным носителем. В комплексе RUR-4 Weapon Alpha использовалась глубинная бомба, оснащенная ракетным ускорителем. В СССР на вооружении стояли авиационные ракето-торпеды РАТ-52 . В 1977 в СССР был принят на вооружение комплекс Шквал , оснащенный торпедой М-5. Эта торпеда имеет реактивный двигатель, работающий на гидрореагирующем твёрдом топливе. В 2005 году о создании аналогичной суперкавитирущей торпеды сообщила немецкая компания Diehl BGT Defence, а в США ведутся разработки торпеды HSUW. Особенностью реактивных торпед является их скорость, которая превышает 200 узлов и достигается благодаря движению торпеды в суперкавитирующей полости пузырьков газа, благодаря чему снижается сопротивление воды.

Кроме реактивных двигателей, в настоящее время используются также нестандартные торпедные двигатели от газовых турбин до двигателей на однокомпонентном топливе, например, на гексафториде серы, распыляемого над блоком твердого лития.

Приборы маневрирования и управления

Маятниковый гидростат
1. Ось маятника.
2. Руль глубины.
3. Маятник.
4. Диск гидростата.

Уже при первых экспериментах с торпедами стало ясно, что во время движения торпеда постоянно отклоняется от изначально заданного курса и глубины хода. Некоторые образцы торпед получили систему дистанционного управления, которая позволяла вручную задавать глубину хода и курс движения. Роберт Уайтхед на торпеды собственной конструкции установил специальный прибор - гидростат . Он состоял из цилиндра с подвижным диском и пружиной и размещался в торпеде так, что диск воспринимал давление воды. При изменении глубины хода торпеды диск перемещался вертикально и с помощью тяг и вакуумно-воздушного сервопривода управлял рулями глубины. Гидростат имеет значительное запаздывание срабатывания по времени, поэтому при его использовании торпеда постоянно меняла глубину хода. Для стабилизации работы гидростата Уайтхед использовал маятник, который был соединен с вертикальными рулями таким образом, чтобы ускорить работу гидростата.
Пока торпеды имели ограниченную дальность хода, мер по выдерживанию курса не требовалось. С увеличением дальности торпеды стали значительно отклоняться от курса, что потребовало использовать специальные меры и управлять вертикальными рулями. Наиболее эффективным прибором стал прибор Обри, который представлял из себя гироскоп, который при наклоне любой из его осей стремится занять первоначальное положение. С помощью тяг возвратное усилие гироскопа передавалось на вертикальные рули, благодаря чему торпеда выдерживала первоначально заданный курс с достаточно высокой точностью. Гироскоп раскручивался в момент выстрела с помощью пружины или пневматической турбины. При установке гироскопа на угол, не совпадающий с осью пуска, можно было добиться движения торпеды под углом к направлению выстрела.

Торпеды, оборудованные гидростатическим механизмом и гироскопом, в годы Второй мировой войны стали оборудоваться механизмом циркуляции . После пуска такая торпеда могла двигаться по любой заранее запрограммированной траектории. В Германии такие системы наведения получили название FaT (Flachenabsuchender Torpedo, горизонтально маневрирующая торпеда) и LuT - (Lagenuabhangiger Torpedo, торпеда с автономным управлением). Системы маневрирования позволяли задавать сложные траектории движения, благодаря чему повышалась безопасность стреляющего корабля и повышалась эффективность стрельбы. Циркулирующие торпеды были наиболее эффективны при атаке конвоев и внутренних акваторий портов, то есть при высоком скоплении кораблей противника.

Наведение и управление торпедами при стрельбе

Прибор управления торпедной стрельбой

Торпеды могут иметь различные варианты наведения и управления. Наибольшее распространение сначала имели неуправляемые торпеды, которые, подобно артиллерийскому снаряду, после пуска не оборудовались устройствами изменения курса. Существовали также торпеды, управляемые дистанционно по проводам и человекоуправляемые торпеды, управлявшиеся пилотом. Позже появились торпеды с системами самонаведения, которые самостоятельно наводились на цель используя различные физические поля: электромагнитное, акустическое, оптическое, а так же по кильватерному следу . Существуют также торпеды с дистанционным управлением по радиоканалу и использующие комбинацию различных типов наведения.

Торпедный треугольник

Торпеды Бреннана и некоторые другие типы ранних торпед имели дистанционное управление, в то время как наиболее распространенные торпеды Уайтхеда и их дальнейшие модификации требовали лишь первоначального наведения. При этом было необходимо учесть целый ряд параметров, влияющих на шансы поражения цели. С ростом дальности хода торпед решение задачи их наведения становилась все более сложной. Для наведения использовались специальные таблицы и приборы, с помощью которых рассчитывалось упреждение пуска в зависимости от взаимных курсов стреляющего корабля и цели, их скоростей, дистанции до цели, погодных условиий и других параметров.

Простейшие, но достаточно точные расчеты координат и параметров движения цели (КПДЦ), выполнялись вручную путем вычисления тригонометрических функций. Упростить расчет можно при использовании навигационного планшета или с помощью директора торпедной стрельбы .
В общем случае решение торпедного треугольника сводится к вычислению угла угла α по известным параметрам скорости цели V Ц , скорости торпеды V Т и курса цели Θ . Фактически за счет влияния различных параметров расчет производился, исходя их большего числа данных.

Панель управления Torpedo Data Computer

К началу Второй мировой войны появились автоматические электромеханические калькуляторы, позволяющие произвести расчет пуска торпед. На флоте США использовали Torpedo Data Computer (TDC) . Это был сложный механический прибор, в который перед пуском торпеды вводились данные о корабле-носителе торпеды (курс и скорость), о параметрах торпеде (тип, глубина, скорость) и данные о цели (курс, скорость, дистанция). По введенным данным TDC производил не только расчет торпедного треугольника, но и в автоматическом режиме производил сопровождение цели. Полученные данные передавались в торпедный отсек, где с помощью механического толкателя устанавливался угол гироскопа. TDC позволял вводить данные во все торпедные аппараты, учитывая их взаимное положение, в том числе для веерного пуска. Так как данные о носителе вводились автоматически с гирокомпаса и питометра , во время атаки подводная лодка могла вести активное маневрирование без необходимости повторных расчетов.

Устройства самонаведения

Значительно упрощают расчеты при стрельбе и повышают эффективность использования торпед использование систем дистанционного управления и самонаведения.
Впервые дистанционное механическое управление было применено на торпедах Бреннана, также управление по проводам использовалось на самых различных типах торпед. Радиоуправление впервые были использовано на торпеде Хаммонда в годы Первой Мировой войны .
Среди систем самонаведения наибольшее распространение сначала получили торпеды с акустическим пассивным самонаведением. Первыми поступили на вооружение в марте 1943 года торпеды G7e/T4 Falke, но массовой стала следующая модификация, G7es Т-5 Zaunkönig . В торпеде был использован метод пассивного наведения, при котором прибор самонаведения сначала анализирует характеристики шума, сравнивая их с характерными образцами, а затем формирует сигналы управления механизмом курсовых рулей, сравнивая уровни сигналов, поступающих на левый и правый акустический приемник. В США в 1941 была разработана торпеда Mark 24 FIDO , но из за отсутствия системы анализа шумов она применялась только для сброса с самолетов, так как могла навестись на стреляющий корабль. Торпеда после сброса начинала движение, описывая циркуляцию до момента приема акустических шумов, после чего происходило наведение на цель.
Активные акустические системы наведения содержат гидролокатор , с помощью которого производится наведение на цель по отраженному от нее акустическому сигналу.
Менее распространены системы, осуществляющие наведение по изменению магнитного поля, создаваемое кораблем.
После окончания Второй Мировой войны торпеды стали оборудоваться устройствами, производящими наведение по кильватерному следу, оставляемого целью.

Боевая часть

Pi 1 (Pi G7H) - взрыватель немецких торпед G7a и G7е

Первые торпеды снабжались боевой частью с зарядом пироксилина и ударным взрывателем. При ударе носовой части торпеды об борт цели, иглы ударника разбивают капсюли-воспламенители, которые, в свою очередь, вызывают подрыв взрывчатого вещества.

Срабатывание ударного взрывателя было возможно только при перпендикулярном попадании торпеды в цель. Если соударение происходило по касательной, ударник не срабатывал и торпеда уходила в сторону. Улучшить характеристики ударного взрывателя пытались с помощью специальных усов, расположенных в носовой части торпеды. Чтобы повысить вероятность подрыва, на торпеды стали устанавливать инерционные взрыватели. Инерционный взрыватель срабатывал от маятника, который при резком изменении скорости или курса торпеды освобождал боек, который, в свою очередь, под действием боевой пружины пробивал капсюли, воспламеняющие заряд взрывчатого вещества.

Головной отсек торпеды УГСТ с антенной системы самонаведения и датчиками неконтактных взрывателей

Позже, для повышения безопасности, взрыватели стали оборудовать предохранительной вертушкой, которая раскручивалась после набора торпедой заданной скорости и разблокировала ударник. Таким образом повышалась безопасность стреляющего корабля.

Кроме механических взрывателей, торпеды оборудовались электрическими взрывателями, подрыв которых происходил за счет разряда конденсатора. Конденсатор зарядался от генератора, ротор которого был связан с вертушкой. Благодаря такой конструкции предохранитель случайного подрыва и взрыватель конструктивно объединялись, что повышало их надежность.
Использование контактных взрывателей не позволяло реализовать весь боевой потенциал торпед. Применение толстой подводной брони и противоторпедных булей позволяло не только снизить урон при взрыве торпеды, но и в некоторых случаях избежать повреждений. Значительно повысить эффективность торпед можно было, обеспечив их подрыв не у борта, а под дном корабля. Это стало возможно с появлением неконтактных взрывателей. Такие взрыватели срабатывают под воздействием изменения магнитного, акустического, гидродинамического или оптического полей.
Неконтактные взрыватели бывают активного и пассивного типов. В первом случае взрыватель содержит излучатель, формирующий вокруг торпеды физическое поле, состояние которого контролируется приемником. В случае изменения параметров поля приемник инициирует подрыв взрывчатого вещества торпеды. Пассивные приборы наведения не содержат излучателей, а отслеживают изменения естественных полей, например магнитного поля Земли.

Средства противодействия

Броненосец Евстафий с противоторпедными сетями.

Появление торпед вызвало необходимость разработки и применения средств противодействия торпедным атакам. Так как первые торпеды имели невысокую скорость, с ними можно было бороться, обстреливая торпеды из стрелкового оружия и пушек малого калибра.

Проектируемые корабли стали оборудоваться специальными системами пассивной защиты. С внешней стороны бортов устанавливались противоторпедные були, которые представляли собой частично заполненные водой узконаправленных спонсоны . При попадании торпеды энергия взрыва поглощалась водой и отражалась от борта, снижая повреждения. После Первой Мировой войны также использовался противоторпедный пояс, который состоял из нескольких легкобронированных отсеков, расположенных напротив ватерлинии . Этот пояс поглощал взрыв торпеды и сводил к минимуму внутренние повреждения корабля. Разновидностью противоторпедного пояса являлась конструктивная подводная защита системы Пульезе, использованная на линкоре Giulio Cesare .

Реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1)

Достаточно эффективными для борьбы с торпедами являлись противоторпедные сети, вывешенные с бортов корабля. Торпеда, попадая в сети, взрывалась на безопасном удалении от корабля либо теряла ход. Сети использовались так же для защиты корабельных стоянок, каналов и портовых акваторий.

Для борьбы с торпедами, использующими различные типы самонаведения, корабли и подводные лодки оборудуются имитаторами и источниками помех, усложняющими работу различных систем управления. Кроме того, принимаются различные меры, снижающие физические поля корабля.
Современные корабли оборудуются активными системами противоторпедной защиты. К таким системам относится, например, реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1), в котором используются три вида боеприпасов (снаряд-отводитель, снаряд заградитель, глубинный снаряд), десятиствольная автоматизированная пусковая установка со следящими приводами наведения, приборов управления стрельбой, устройств заряжания и подачи. (англ.)

Видео


Торпеда Whitehead 1876 года


Торпеда Howell 1898 года

Первые торпеды отличались от современных не меньше, чем колесный пароходофрегат от атомного авианосца. В 1866 году «скат» нес 18 кг взрывчатки на расстояние 200 м со скоростью около 6 узлов. Точность стрельбы была ниже всякой критики. К 1868 году применение соосных винтов, вращающихся в разные стороны, позволило уменьшить рысканье торпеды в горизонтальной плоскости, а установка маятникового механизма управления рулями – стабилизировать глубину хода.

К 1876 году детище Уайтхеда плыло уже со скоростью около 20 узлов и преодолевало расстояние в два кабельтова (около 370 м). Через два года торпеды сказали свое слово на поле брани: русские моряки «самодвижущимися минами» отправили на дно батумского рейда турецкий сторожевой пароход «Интибах».

Торпедный отсек субмарины
Если не знать, какой разрушительной силой обладают лежащие на стеллажах «рыбки», то можно и не догадаться. Слева – два торпедных аппарата с открытыми крышками. Верхний из них пока не заряжен.

Дальнейшая эволюция торпедного оружия до середины XX века сводится к увеличению заряда, дальности, скорости и способности торпед держаться на курсе. Принципиально важно, что до поры общая идеология оружия оставалась ровно той же, что и в 1866 году: торпеда должна была попасть в борт цели и взорваться при ударе.

Прямоидущие торпеды сохраняются на вооружении и поныне, периодически находя применение в ходе всяческих конфликтов. Именно ими был в 1982 году потоплен аргентинский крейсер «Генерал Бельграно», ставший самой известной жертвой Фолклендской войны.

Английская АПЛ Conqueror тогда выпустила по крейсеру три торпеды Mk-VIII, состоящие на вооружении Королевского флота с середины 1920-х годов. Сочетание атомной субмарины и допотопных торпед выглядит забавно, но не будем забывать, что и крейсер постройки 1938 года к 1982-му имел скорее музейную, нежели военную ценность.

Революцию в торпедном деле произвело появление в середине XX века систем самонаведения и телеуправления, а также неконтактных взрывателей.

Современные системы самонаведения (ССН) делятся на пассивные – «ловящие» физические поля, создаваемые целью, и активные – ищущие цель обычно при помощи гидролокации. В первом случае речь идет чаще всего об акустическом поле – шуме винтов и механизмов.

Несколько особняком стоят системы самонаведения, лоцирующие кильватерный след корабля. Сохраняющиеся в нем многочисленные мелкие пузырьки воздуха меняют акустические свойства воды, и это изменение надежно «ловится» гидролокатором торпеды далеко за кормой прошедшего корабля. Зафиксировав след, торпеда поворачивает в сторону движения цели и ведет поиск, двигаясь «змейкой». Лоцирование кильватерного следа, основной способ самонаведения торпед в российском флоте, считается в принципе надежным. Правда, торпеда, вынужденная догонять цель, тратит на это время и драгоценные кабельтовы пути. А подлодке, чтобы выстрелить «по следу», приходится подбираться к цели ближе, чем это в принципе позволялось бы дальностью торпеды. Шансы на выживание при этом не увеличиваются.

Вторым важнейшим нововведением стали распространившиеся во второй половине XX века системы телеуправления торпедами. Как правило, управление торпедой осуществляется по кабелю, разматываемому по мере движения.

Сочетание управляемости с неконтактным взрывателем позволило радикально изменить саму идеологию применения торпед – теперь они ориентированы на то, чтобы нырнуть под киль атакуемой цели и взорваться там.

Противоминные сети
Эскадренный броненосец «Император Александр II» во время испытаний противоминной сети системы Булливанта. Крон-штадт, 1891 год

Поймай ее сетью!

Первые попытки оградить корабли от новой угрозы были предприняты в считанные годы после ее появления. Концепция выглядела незатейливо: на борту корабля крепились откидные выстрелы, с которых свешивалась вниз стальная сеть, останавливающая торпеды.

На испытаниях новинки в Англии в 1874 году сеть благополучно отразила все атаки. Аналогичные испытания, проведенные в России десятилетием позже, дали результат чуть похуже: сеть, рассчитанная на сопротивление на разрыв в 2,5 т, выдержала пять из восьми выстрелов, однако три пробившие ее торпеды запутались винтами и все равно были остановлены.

Наиболее яркие эпизоды биографии противоторпедных сетей относятся к русско-японской войне. Однако к началу Первой мировой скорость торпед перевалила за 40 узлов, а заряд достиг сотни килограммов. Для преодоления заграждений на торпеды начали устанавливать специальные резаки. В мае 1915 года английский броненосец «Триумф» (Triumph), обстреливавший турецкие позиции у входа в Дарданеллы, был, несмотря на опущенные сети, потоплен единственным выстрелом с немецкой подлодки – торпеда пробила защиту. К 1916 году опускаемая «кольчужка» воспринималась скорее как бесполезный груз, нежели как защита.

(IMG:http://topwar.ru/uploads/posts/2011-04/1303281376_2712117058_5c8c8fd7bf_o_1300783343_full.jpg) Отгородиться стенкой

Энергия взрывной волны быстро убывает с расстоянием. Логично было бы поставить на некотором расстоянии от наружной обшивки корабля броневую переборку. Если она выдержит воздействие взрывной волны, то повреждения корабля ограничатся затоплением одногодвух отсеков, а энергетическая установка, погреба боеприпасов и прочие уязвимые места не пострадают.

Видимо, первым идею конструктивной ПТЗ выдвинул бывший главный строитель английского флота Э.Рид в 1884 году, но его мысль не была поддержана Адмиралтейством. Англичане предпочли в проектах своих кораблей следовать традиционному на тот момент пути: делить корпус на большое число водонепроницаемых отсеков и прикрывать машинно-котельные отделения расположенными по бортам угольными ямами.
Такая система защиты корабля от артиллерийских снарядов неоднократно испытывалась в конце XIX века и в целом выглядела эффективной: сложенный в ямах уголь исправно «улавливал» снаряды и не загорался.

Система противоторпедных переборок была впервые реализована во французском флоте на экспериментальном броненосце «Анри IV», построенном по проекту Э.Бертена. Суть замысла сводилась к тому, чтобы плавно закруглить скосы двух броневых палуб вниз, параллельно борту и на некотором расстоянии от него. Кон-струкция Бертена не побывала на войне, и вероятно, это было к лучшему – построенный по этой схеме кессон, имитировавший отсек «Анри», был при испытаниях разрушен взрывом прикрепленного к обшивке торпедного заряда.

В упрощенном виде этот подход был реализован на русском броненосце «Цесаревич», строившемся во Франции и по французскому же проекту, а также на ЭБР типа «Бородино», копировавших тот же проект. Корабли получили в качестве противоторпедной защиты продольную броневую переборку толщиной 102 мм, отстоявшую от наружной обшивки на 2м. «Цесаревичу» это не слишком помогло– получив японскую торпеду при нападении японцев на Порт-Артур, корабль провел в ремонте несколько месяцев.

Английский флот полагался на угольные ямы примерно до строительства «Дредноута». Однако попытка испытать данную защиту в 1904 году закончилась провалом. В качестве «подопытного кролика» выступил древний броненосный таран «Бельайл». Снаружи к его корпусу пристроили коффердам шириной 0,6 м, заполненный целлюлозой, а между наружной обшивкой и котельным отделением возвели шесть продольных переборок, пространство между которыми заполнили углем. Взрыв 457-мм торпеды проделал в этой конструкции дыру 2,5х3,5 м, снес коффердам, разрушил все переборки, кроме последней, и вспучил палубу. В результате «Дредноут» получил броневые экраны, прикрывавшие погреба башен, а последующие линкоры строились уже с полноразмерными продольными переборками по длине корпуса– конструкторская мысль пришла к единому решению.

Постепенно конструкция ПТЗ усложнялась, а ее размеры увеличивались. Боевой опыт показал, что главное в конструктивной защите – глубина, то есть расстояние от места взрыва до прикрываемых защитой корабельных внутренностей. На смену одиночной переборке пришли затейливые конструкции, состоявшие из нескольких отсеков. Чтобы отодвинуть «эпицентр» взрыва как можно дальше, широко применялись були – продольные наделки, монтируемые на корпусе ниже ватерлинии.

Одной из самых мощных считается ПТЗ французских линкоров типа «Ришелье», состоявшая из противоторпедной инескольких разделительных переборок, образовывавших четыре ряда защитных отсеков. Наружный, имевший почти 2-метровую ширину, заполнялся пенорезиновым наполнителем. Затем следовал ряд пустых отсеков, за ним – топливные баки, затем еще один ряд пустых отсеков, предназначенный для сбора разлившегося при взрыве топлива. Только после этого взрывной волне предстояло наткнуться на противоторпедную переборку, после которой следовал еще один ряд пустых отсеков – чтобы уж точно поймать все просочившееся. На однотипном линкоре «Жан Бар» ПТЗ была усилена булями, в результате чего ее общая глубина достигла 9,45 м.

На американских линкорах типа «Норт Кэролайн» систему ПТЗ образовывали буль и пять переборок – правда, не из брони, а из обычной судостроительной стали. Полость буля и следующий за ним отсек были пустыми, два следующих отсека заполнялись топливом или забортной водой. Последний, внутренний, отсек снова был пустым.
Помимо защиты от подводных взрывов многочисленные отсеки можно было использовать для выравнивания крена, затапливая их по мере надобности.

Излишне говорить о том, что такой расход пространства и водоизмещения был роскошью, допустимой только на самых крупных кораблях. Следующая серия американских линкоров (South Dacota) получила котлотурбинную установку иных габаритов – короче и шире. А увеличить ширину корпуса было уже невозможно – иначе корабли не прошли бы через Панамский канал. Итогом стало уменьшение глубины ПТЗ.

Несмотря на все ухищрения, защита все время отставала от вооружения. ПТЗ тех же американских линкоров рассчитывалась на торпеду с 317-килограммовым зарядом, однако уже после их постройки у японцев появились торпеды с зарядами в 400 кг ТНТ и больше. В результате командир «Норт Кэролайн», получившей осенью 1942 года попадание японской 533-мм торпеды, в своем рапорте честно писал, что никогда не считал подводную защиту корабля адекватной современной торпеде. Впрочем, поврежденный линкор тогда остался на плаву.

Не дать дойти до цели

Появление ядерного оружия и управляемых ракет радикально изменило взгляды на вооружение и защиту боевого корабля. Флот расстался с многобашенными линкорами. На новых кораблях место орудийных башен и броневых поясов заняли ракетные комплексы и локаторы. Главным стало не выдержать попадание вражеского снаряда, но просто его не допустить.

Сходным образом поменялся подход к противоторпедной защите – були с переборками хоть и не исчезли совершенно, но явно отошли на задний план. Задача сегодняшней ПТЗ – сбить торпеду справильного курса, запутав ее систему самонаведения, либо просто уничтожить на подходе к цели.

«Джентльменский набор» современной ПТЗ включает несколько общепринятых устройств. Важнейшие из них – средства гидроакустического противодействия, как буксируемые, так и выстреливаемые. Плавающее в воде устройство создает акустическое поле, попросту говоря – шумит. Шум от средств ГПД может сбивать систему самонаведения с толку, либо имитируя шумы корабля (значительно громче его самого), либо «забивая» вражескую гидроакустику помехами. Так, американская система AN/SLQ-25 «Никси» включает буксируемые со скоростью до 25 узлов отводители торпед и шестиствольные пусковые установки для стрельбы средствами ГПД. К этому прилагается автоматика, определяющая параметры атакующих торпед, генераторы сигналов, собственные гидроакустические комплексы и много чего еще.

В последние годы появляются сообщения о разработке системы AN/WSQ-11, которая должна обеспечить не только подавление устройств самонаведения, но и поражение противоторпедами на дистанции от 100 до 2000 м). Небольшая противоторпеда (калибр 152 мм, длина 2,7 м, масса 90 кг, дальность хода 2–3 км) оснащена паротурбинной энергоустановкой.

Испытания опытных образцов проводятся с 2004 года, а принятие на вооружение ожидается в 2012-м. Есть также сведения о разработке суперкавитирующей противоторпеды, способной развивать скорость до 200 узлов, аналогично российскому «Шквалу», но рассказать о ней практически нечего – все бережно укрыто завесой секретности.

Разработки других стран выглядят похоже. Французские и итальянские авианосцы оснащены системой ПТЗ SLAT совместной разработки. Основным элементом системы является буксируемая антенна, включающая 42 излучающих элемента и побортно устанавливаемые 12-трубные аппараты для стрельбы самоходными или дрейфующими средствами ГПД «Спартакус». Известно также о разработке активной системы, стреляющей противоторпедами.

Примечательно, что в череде сообщений о различных разработках пока не появлялось информации о чем-то, способном сбить с курса торпеду, идущую по кильватерному следу корабля.

На вооружении российского флота кнастоящему времени находятся противоторпедные комплексы «Удав-1М» и «Пакет-Э/НК». Первый из них предназначен для поражения или отведения торпед, атакующих корабль. Комплекс может стрелять снарядами двух типов. Снаряд-отводитель 111СО2 предназначен для отведения торпеды от цели.

Заградительно-глубинные снаряды 111СЗГ позволяют сформировать своего рода минное поле на пути атакующей торпеды. При этом вероятность поражения прямоидущей торпеды одним залпом составляет 90%, а самонаводящейся – около 76. Комплекс «Пакет» предназначен для уничтожения атакующих надводный корабль торпед противоторпедами. В открытых источниках говорится о том, что его применение снижает вероятность поражения корабля торпедой примерно в 3–3,5 раза, но кажется вероятным, что в боевых условиях эта цифра не проверялась, как, впрочем, и все остальные.

Г) по роду заряда ВВ в зарядном отделении.

Назначение, классификация, размещение торпедного оружия.

Торпедой называется самодвижущийся управляемый подводный снаряд, снабженный зарядом обычного или ядерного ВВ и предназначенный для доставки заряда к цели и его подрыва.

Для атомных и дизельных торпедных подводных лодок торпедное оружие является главным видом оружия, с помощью которого они решают свои основные задачи.

На ракетных подводных лодках торпедное оружие является основным оружием самообороны от подводного и надводного противника. Одновременно с этим ракетным подводным лодкам после выполнения ракетной стрельбы может быть поставлена задача по нанесению торпедного удара по целям противника.

На противолодочных кораблях и некоторых других надводных кораблях торпедное оружие стало одним из основных видов противолодочного оружия. В то же время с этих кораблей с помощью торпед возможно нанесение торпедного удара (в определенных условиях тактической обстановки) и по надводным кораблям противника.

Таким образом, современное торпедное оружие на подводных лодках и надводных кораблях позволяет как самостоятельно, так и во взаимодействии с другими силами флота наносить эффективные удары по подводным и надводным целям противника и решать задачи самообороны.

Независимо от типа носителя с помощью торпедного оружия в настоящее время решаются следующиеосновные задачи.

Уничтожение атомных ракетных подводных лодок противника

Уничтожение крупных боевых надводных кораблей противника (авианосцев, крейсеров, противолодочных кораблей);

Уничтожение атомных и дизельных многоцелевых подводных лодок противника;

Уничтожение транспортов, десантных и вспомогательных кораблей противника;

Нанесение удара по гидротехническим сооружениям и другим объектам противника, расположенным у уреза воды.

На современных подводных лодках и надводных кораблях подторпедным оружием понимается комплекс оружия и технических средств, включающий в себя следующие основные элементы:

торпеды различных типов;

Торпедные аппараты;

Систему управления торпедной стрельбой.

Непосредственно к комплексу торпедного оружия примыкают различные вспомогательные технические средства носителя, предназначенные для повышения боевых свойств оружия и удобства его обслуживания. К таким вспомогательным средствам (как правило, на подводных лодках) относятся торпедопогрузочное устройство (ТПУ), устройство быстрого заряжания торпед в торпедные аппараты (УБЗ), система хранения запасных торпед, аппаратура контроля.

Количественный состав торпедного оружия, его роль и круг боевых задач, решаемых этим оружием, определяется классом, типом и основным назначением носителя.


Так, например, на атомных и дизельных торпедных подводных лодках, где торпедное оружие является главным видом оружия, состав его представлен наиболее полночи включает в себя:

Боекомплект различных торпед (до 20 шт.), размещенных непосредственно в трубах торпедных аппаратов и на стеллажах а торпедном отсеке;

Торпедные аппараты (до 10 труб), имеющие либо один калибр, либо различные калибры, что зависит от типа применяемых торпед,

Систему управления торпедной стрельбой, являющуюся либо самостоятельной специализированной системой приборов управления торпедной стрельбой (ПУТС), либо частью (блоком) общекорабельной боевой информационно-управляющей системы (БИУС).

Кроме того, такие подводные лодки оборудованы всеми необходимыми вспомогательными устройствами.

Торпедные подводные лодки с помощью торпедного оружия решают свои основные задачи по нанесению удара и уничтожению подводных лодок, надводных кораблей и транспортов противника. В определенных условиях они применяют торпедное оружие в целях самообороны от противолодочных кораблей и подводных лодок противника.

Торпедные аппараты подводных лодок, имеющих на вооружении ракетные противолодочные комплексы (РПК), одновременно служат пусковыми установками для противолодочных ракет. В этих случаях для погрузки, хранения и заряжания ракет используются те же торпедопогрузочные устройства, стеллажи и устройство быстрого заряжания, что и для торпед. Попутно отметим, что торпедные аппараты подводных лодок могут использоваться для хранения и постановки мин при выполнении минно-заградительных боевых задач.

На ракетных подводных лодках состав торпедного оружия аналогичен рассмотренному выше и отличается от него только меньшим числом торпед, торпедных аппаратов и мест хранения. Система управления торпедной стрельбой является, как правило, частью общекорабельной БИУС. На этих подводных лодках торпедное оружие предназначено в основном для самообороны от противолодочных подводных лодок и кораблей противника. Эта особенность обусловливает запас торпед соответствующего типа и назначения.

Информация о цели, необходимая для решения задач торпедной стрельбы, на подводных лодках поступает в основном от гидроакустического комплекса или гидроакустической станции. В определенных условиях эта информация может быть получена от радиолокационной станции или же от перископа.

Торпедное оружие противолодочных кораблей входит в состав их противолодочного вооружения и является одним из наиболее эффективных видов противолодочного оружия. В состав торпедного оружия входят:

Боекомплект противолодочных торпед (до 10 шт.);

Торпедные аппараты (от 2 до 10),

Система управления торпедной стрельбой.

Число принимаемых торпед, как правило, соответствует числу труб торпедных аппаратов, так как торпеды хранятся только в трубах аппаратов. Следует отметить, что в зависимости от поставленной задачи противолодочные корабли могут принимать (помимо противолодочных) также торпеды для стрельбы по надводным кораблям и универсальные торпеды.

Число торпедных аппаратов на противолодочных кораблях определяется их подклассом и проектом. На малых противолодочных кораблях (мпк) и катерах (пка) устанавливаются, как правило, одно- или двухтрубные торпедные аппараты с общим числом труб до четырех. На сторожевых кораблях (скр) и больших противолодочных кораблях (бпк) устанавливается обычно по два четырех- или пятитрубных торпедных аппарата, размещаемых побортно на верхней палубе или в специальных выгородках в борту корабля.

Системы управления торпедной стрельбой на современных противолодочных кораблях являются, как правило, частью общекорабельной комплексной системы управления стрельбой противолодочным оружием. Однако не исключаются случаи установки на кораблях специализированной системы ПУТС.

На противолодочных кораблях основными средствами обнаружения и целеуказания для обеспечения боевого применения торпедного оружия по подводным лодкам противника являются гидроакустические станции, а для стрельбы по надводным кораблям - радиолокационные станции. В то же время в целях более полного использования боевых и тактических свойств торпед корабли; могут получать целеуказание и от внешних источников информации (взаимодействующих кораблей, вертолетов, самолетов). При стрельбе по надводной цели целеуказание выдается радиолокационной станцией.

Состав торпедного оружия надводных кораблей других классов и типов (эскадренных миноносцев, ракетных крейсеров) в принципе аналогичен рассмотренному выше. Специфика заключается лишь в типах торпед, принятых а торпедные аппараты.

Торпедные катера, на которых торпедное оружие, так же как и на торпедных подводных лодках, является главным видом оружия, несут два или четыре однотрубных торпедных аппарата и соответ­ственно две или четыре торпеды, предназначенные для ударов по надводным кораблям противника. На катерах устанавливается система управления торпедной стрельбой, включающая в себя радиолокационную станцию, которая служит основным источником информации о цели.

К положительным качествам торпед, оказывающим влияние на успешность их боевого применения, относятся:

Относительная скрытность боевого применения торпед с подводных лодок по надводным кораблям и с надводных кораблей по подводным лодкам, обеспечивающая внезапность нанесения удара;

Поражение надводных кораблей в наиболее уязвимой их части корпуса - под днищем;

Поражение подводных лодок, находящихся на любых глубинах их погружения,

Относительная простота устройств, обеспечивающих боевое применение торпед. Большое разнообразие задач, при решении которых носителями используется торпедное оружие, обусловило создание торпед различных типов, которые можно классифицировать по следующим основным признакам:

а) по назначению:

Противолодочные;

Против надводных кораблей;

Универсальные (против подводных лодок и надводных кораблей);

б) по типу носителя:

Корабельные;

Лодочные;

Универсальные,

Авиационные;

Боевые части противолодочных ракет и самодвижущихся мин

в) по калибру:

Малогабаритные (калибром 40 см) ;

Крупногабаритные (калибром более 53 см).

С зарядом обычного взрывчатого вещества;

С ядерным боеприпасом;

Практические (без заряда).

д) по типу энергосиловой установки:

С тепловой энергетикой (парогазовые);

Электрические;

Реактивные.

е) по способу управления:

Автономно управляемые (прямоидущие и маневрирующие);

Самонаводящиеся (в одной или двух плоскостях);

Телеуправляемые;

С комбинированным управлением.

ж) по типу аппаратуры самонаведения:

С активной СН;

С пассивной СН;

С комбинированной СН;

С неакустической СН.

Как видно из классификации, семейство торпед весьма велико. Но несмотря на такое широкое разнообразие, все современные торпеды близки друг другу по своим принципиальным положениям устройства и принципа действия.

Наша с вами задача состоит в том, чтобы эти принципиальные положения изучить и запомнить.


Большинство современных образцов торпед (независимо от их назначения, характера носителя и калибра) имеет типовую конструкцию корпуса и компоновку основных приборов, агрегатов и узлов. Они отличаются в зависимости от назначения торпеды, что обусловливается главным образом различными видами используемой в них энергетики и принципом действия энергосиловой установки. Как правило, торпеда состоит из четырех основных частей:

зарядного отделения (с аппаратурой СН).

отделения энергокомпонентов (с отсеком пускорегулирующей аппаратуры -для торпед с тепловой энергетикой) или аккумуляторного отделения (для электрических торпед).

Кормового отделения

Хвостовой части.

Электрическая торпеда

1 - боевое зарядное отделение; 2 - инерционные взрыватели; 3 - аккумуляторная батарея; 4 - электродвигатель. 5 - хвостовая часть.

Современные стандартные торпеды, предназначенные для уничтожения надводных кораблей, имеют:

длину – 6-8 метров.

массу -около 2 тонн и более.

глубину хода- 12-14м.

дальность - свыше 20 км.

скорость хода - более 50 уз.

Оснащение таких торпед ядерным боеприпасом обусловливает возможность их применения не только для нанесения ударов по надводным кораблям, но также для уничтожения подводных лодок противника и разрушения береговых объектов, находящихся у уреза воды.

Противолодочные электрические торпеды имеют скорость 30 - 40 уз при дальности 15-16 км. Их главное достоинство заключается в способности поражать подводные лодки, находящиеся на глубине в несколько сот метров.

Применение в торпедах систем самонаведения - одноплоскостной, обеспечивающей автоматическое наведение торпеды на цель в горизонтальной плоскости, или двухплоскостной (в противолодочных торпедах) - для наведения торпеды на подводную лодку - цель как по направлению, так и по глубине резко повышает боевые возможности торпедного оружия.

Корпуса (оболочки) торпед выполнены из стали или алюминиево-магниевых сплавов высокой прочности. Основные части герметично соединяются между собой и образуют корпус торпеды, имеющий обтекаемую форму, что способствует уменьшению сопротивления при ее движении в воде. Прочность и герметичность корпусов торпед позволяет подводным лодкам производить стрельбу ими с глубин, обеспечивающих высокую скрытность боевых действий, а надводным кораблям - наносить удар по подводным лодкам, находящимся на любых глубинах погружения. На корпусе торпеды устанавливаются специальные направляющие наделки для придания ей заданного положения в трубе торпедного аппарата.

В основных частях корпуса торпеды расположены:

Боевая принадлежность

Энергосиловая установка

Система управления движением и наведением

Вспомогательные механизмы.

Каждый из компонентов будут нами рассмотрены на практических занятиях по устройству торпедного оружия.

Торпедным аппаратом называется специальная установка, предназначенная для хранения приготовленной к выстрелу торпеды, ввода исходных данных в систему управления движением и наведением торпеды и выстреливания торпеды с заданной скоростью вылета в определенном направлении.

Торпедными аппаратами вооружаются все подводные лодки, противолодочные корабли, торпедные катера и некоторые корабли других классов. Их количество, размещение и калибр определяются конкретным проектом носителя. Из одних и тех же торпедных аппаратов могут выстреливаться различные образцы торпед или мин, а также производится постановка самоходных приборов помех и имитаторов подводных лодок.

Отдельные образцы торпедных аппаратов (как правило, на подводных лодках) могут использоваться как пусковые установки для стрельбы противолодочными ракетами.

Современные торпедные аппараты имеют отдельные конструктивные отличия и могут подразделяться по следующим основным признакам:

а) по носителям:

- торпедные аппараты подводных лодок;

Торпедные аппараты надводных кораблей;

б) по степени поведения:

- наводящиеся;

Ненаводящиеся (стационарные);

Откидывающиеся (поворотные);

в) по количеству торпедных труб:

- многотрубные,

Однотрубные;

г) по типу системы стрельбы:

- с пороховой системой,

С воздушной системой;

С гидравлической системой;

д) по калибру:

- малогабаритные (калибром 40 см);

Стандартные (калибром 53 см);

Большие (калибром более 53 см).

На подводной лодке торпедные аппараты ненаводящиеся. Они, как правило, размещаются в несколько ярусов, один над другим. Носовая часть торпедных аппаратов расположена в легком корпусе подводной лодки, а кормовая - в торпедном отсеке. Торпедные аппараты жестко связаны с набором корпуса и его оконечными переборками. Оси труб торпедных аппаратов параллельны друг другу или расположены под определенным углом к диаметральной плоскости подводной лодки.

На надводных кораблях наводящиеся торпедные аппараты представляют собой поворотную платформу с расположенными на ней торпедными трубами. Наведение торпедного аппарата осуществляется разворотом платформы в горизонтальной плоскости с помощью электрического или гидравлического привода. Ненаводящиеся торпедные аппараты жестко крепятся к палубе корабля. У откидывающихся торпедных аппаратов предусмотрено два фиксированных положения: походное, в котором они находятся в повседневных условиях, и боевое. Перевод торпедного аппарата в боевое положение осуществляется его разворотом на фиксированный угол, обеспечивающий возможность стрельбы торпедами.

Торпедный аппарат может состоять из одной или нескольких торпедных труб, изготовленных из стали и способных выдерживать значительное внутреннее давление. Каждая труба имеет переднюю и заднюю крышки.

На надводных кораблях передние крышки аппаратов легкие съемные, на подводных лодках - стальные, герметично укупоривающие носовой срез каждой трубы.

Задние крышки всех торпедных аппаратов закрываются с помощью специального кремальерного затвора и обладают большой прочностью. Открывание и закрывание передней и задней крышек торпедных аппаратов на подводных лодках осуществляется автоматически или ручными приводами.

Система блокировки торпедных аппаратов подводных лодок препятствует открытию передних крышек при открытых или не полностью закрытых задних крышках и наоборот. Задние крышки торпедных аппаратов надводных кораблей открываются и закрываются вручную.

Рис. 1 Установка электрогрелок в трубе ТА:

/-трубкодержатель; 2-штуцер; 3- низкотемпературная электрическая грелка НГТА; 4 - кабель.

Внутри торпедного аппарата по всей его длине устанавливаются четыре направляющие дорожки (верхняя, нижняя и две боковых) с пазами для наделок торпеды, обеспечивающие придание ей заданного положения при погрузке, хранении и движении при выстреле, а также обтюрирующие кольца. Обтюрирующие кольца, уменьшая зазор между корпусом торпеды и внутренними стенками аппарата, способствуют созданию выбрасывающего давления в его кормовой части в момент выстрела. Для удержания торпеды от случайных перемещений служит хвостовой упор, размещенный в задней крышке, а также стопор, автоматически убирающийся перед стрельбой.

Торпедные аппараты надводных кораблей могут иметь штормовые стопоры с ручным приводом.

Доступ к впускному и запирающему клапанам, устройству вентиляции электрических торпед осуществляется с помощью герметично закрываемых горловин. Откидывание курка торпеды производитсякурковым зацепом. Для ввода исходных данных в торпеду на каждом аппарате устанавливается группа периферийных приборов системы управления стрельбой с приводами ручного и дистанционного управления. Основными приборами этой группы являются:

- установщик прибора курса (УПК или УПМ) -для ввода угла поворота торпеды после выстрела, ввода угловых и линейных величии, обеспечивающих маневрирование в соответствии с заданной программой, установки дистанции включения системы самонаведения, борта цели,

- прибор остановки глубины (ЛУГ) - для ввода в торпеду установочной глубины хода;

- прибор установки режима (ПУР) - для установки режима вторичного поиска самонаводящихся торпед и включения силовой плюсовой цепи электропитания.

Ввод исходных данных в торпеду определяется конструктивными особенностями установочных головок ее приборов, а также принципом работы периферийных приборов торпедного аппарата. Он может осуществляться с помощью механических пли электрических приводов, когда шпиндели периферийных приборов соединяются со шпинделями приборов торпеды специальными муфтами. Их отключение производится автоматически в момент выстрела до начала движения торпеды в трубе торпедного аппарата. Отдельные образцы торпед и торпедных аппаратов могут иметь для этой цели самогерметизирующиеся электрические штепсельные разъемы или приборы бесконтактного ввода данных.

С помощью системы стрельбы обеспечивается выстреливание торпеды из торпедного аппарата с заданной скоростью вылета.

На надводных кораблях она может бытьпороховой иливоздушной.

Пороховая система стрельбы состоит из патронника специальной конструкции, размещенного непосредственно на торпедном аппарате, и газопровода. Патронник имеет камеру для размещения порохового выбрасывающего патрона, а также сопло с решеткой - регулятором давления. Воспламенение патрона может производиться вручную или в электрическую с помощью приборов цепи стрельбы. Образующиеся при этом пороховые газы, поступая по газопроводу к периферийным приборам, обеспечивают расстыковку их шпинделей с установочными головками прибора курса и автомата глубины торпеды, а также снятие стопора, удерживающего торпеду. По достижении необходимого давления пороховых газов, поступающих в торпедный аппарат, происходит выстреливание торпеды и она входит в воду на определенном расстоянии от борта.

У торпедных аппаратов с воздушной системой стрельбы выстреливание торпеды производится сжатым воздухом, хранящимся в боевом баллоне.

Торпедные аппараты подводных лодок могут иметьвоздушную илигидравлическую систему стрельбы. Эти системы позволяют применять торпедное оружие в условиях значительного забортного давления (при нахождении подводной лодки на глубинах 200 м и более) и обеспечивают скрытность торпедного залпа. Основными элементами воздушной системы стрельбы подводных торпедных аппаратов являются: боевой баллон с боевым клапаном н воздушными трубопроводами, стрельбовой щиток, блокировочное устройство, глубоководный регулятор времени и выпускной клапан системы БТС (беспузырной торпедной стрельбы) с арматурой.

Боевой баллон служит для хранения воздуха высокого давления и перепуска его в торпедный аппарат в момент выстрела после открытия боевого клапана. Открытие боевого клапана осуществляется воздухом, поступающим по трубопроводу от стрельбового щитка. При этом воздух сначала поступает к блокировочному устройству, обеспечивающему перепуск воздуха только после полного открытия передней крышки торпедного аппарата. От блокировочного устройства воздух поступает на подъем шпинделей прибора установки глубины, установщика прибора курса, снятие стопора и далее на открытие боевого клапана. Поступление сжатого воздуха в кормовую часть заполненного водой торпедного аппарата и его воздействие на торпеду приводит к ее выстреливанию. При движении торпеды в аппарате его свободный заторпедный объем будет увеличиваться, а давление в нем уменьшаться. Падение давления до определенного значения вызывает срабатывание глубоководного регулятора времени, что приводит к открытию выпускного клапана БТС. С его открытием начинается стравливание давления воздуха из торпедного аппарата в цистерну БТС подводной лодки. К моменту выхода торпеды воздушное давление стравливается полностью, выпускной клапан БТС закрывается, а торпедный аппарат заполняется забортной водой. Такая система стрельбы способствует скрытности применения торпедного оружия с подводных лодок. Однако необходимость дальнейшего увеличения глубины стрельбы требует значительного усложнения системы БТС. Это привело к созданию гидравлической системы стрельбы, которая обеспечивает выстреливание торпед из торпедных аппаратов подводных лодок, находящихся на любых глубинах погружения, давлением воды.

В состав гидравлической системы стрельбы торпедного аппарата входят: гидравлический цилиндр с поршнем и штоком, пневматический цилиндр с поршнем и штоком и боевой баллон с боевым клапаном. Штоки гидравлического и пневматического цилиндров жестко скреплены друг с другом. Вокруг трубы торпедного аппарата в ее кормовой части размещается кольцевая цистерна с кингстоном, связанная с задним срезом гидравлического цилиндра. В исходном положении кингстон закрыт. Перед выстрелом боевой баллон заполняется сжатым воздухом, а гидравлический цилиндр - водой. Закрытый боевой клапан препятствует поступлению воздуха в пневматический цилиндр.

В момент выстрела боевой клапан открывается и сжатый воздух, поступая в полость пневматического цилиндра, вызывает перемещение его поршня и связанного с ним поршня гидравлического цилиндра. Это приводит к нагнетанию воды из полости гидравлического цилиндра через открытый кингстон в систему торпедного аппарата и выстреливанию торпеды.

Перед выстрелом с помощью прибора ввода данных, размещенного на трубе торпедного аппарата, осуществляется автоматический подъем его шпинделей.

Рис.2 Структурная схема пятитрубного торпедного аппарата с модернизированной системой обогрева