Уход за лицом: сухая кожа

Почему нельзя делить на ноль? Наглядный пример. Уроки математики: почему нельзя делить на ноль Действия с нулем

Почему нельзя делить на ноль? Наглядный пример. Уроки математики: почему нельзя делить на ноль Действия с нулем

Деление на ноль в математике - деление, при котором делитель равен нулю. Такое деление может быть формально записано ⁄ 0 , где - это делимое.

В обычной арифметике (с вещественными числами) данное выражение не имеет смысла, так как:

  • при ≠ 0 не существует числа, которое при умножении на 0 даёт, поэтому ни одно число не может быть принято за частное ⁄ 0 ;
  • при = 0 деление на ноль также не определено, поскольку любое число при умножении на 0 даёт 0 и может быть принято за частное 0 ⁄ 0 .

Исторически одна из первых ссылок на математическую невозможность присвоения значения ⁄ 0 содержится в критике Джорджа Берклиисчисления бесконечно малых.

Логические ошибки

Поскольку при умножении любого числа на ноль в результате мы всегда получаем ноль, при делении обеих частей выражения × 0 = × 0, верного вне зависимости от значения и, на 0 получаем неверное в случае произвольно заданных переменных выражение = . Поскольку ноль может быть задан не явно, но в виде достаточно сложного математического выражения, к примеру в форме разности двух значений, сводимых друг к другу путём алгебраических преобразований, такое деление может быть достаточно неочевидной ошибкой. Незаметное внесение такого деления в процесс доказательства с целью показать идентичность заведомо разных величин, тем самым доказывая любое абсурдное утверждение, является одной из разновидностей математического софизма .

В информатике

В программировании, в зависимости от языка программирования, типа данных и значения делимого, попытка деления на ноль может приводить к различным последствиям. Принципиально различны последствия деления на ноль в целой и вещественной арифметике:

  • Попытка целочисленного деления на ноль всегда является критической ошибкой, делающей невозможным дальнейшее исполнение программы. Она приводит либо к генерации исключения (которое программа может обработать сама, избежав тем самым аварийной остановки), либо к немедленной остановке программы с выдачей сообщения о неисправимой ошибке и, возможно, содержимого стека вызовов. В некоторых языках программирования, например, в Go, целочисленное деление на нулевую константу считается синтаксической ошибкой и приводит к аварийному прекращению компиляции программы.
  • В вещественной арифметике последствия могут быть различным в разных языках:
  • генерация исключения или остановка программы, как и при целочисленном делении;
  • получение в результате операции специального нечислового значения. Вычисления при этом не прерываются, а их результат впоследствии может быть интерпретирован самой программой или пользователем как осмысленное значение или как свидетельство некорректности вычислений. Широко используется принцип, согласно которому при делении вида ⁄ 0 , где ≠ 0 - число с плавающей запятой, результат оказывается равен положительной или отрицательной (в зависимости от знака делимого) бесконечности - или, а при = 0 в результате получается специальное значению NaN (сокр. от англ. not a number - «не число»). Такой подход принят в стандарте IEEE 754, который поддерживается многими современными языками программирования.

Случайное деление на ноль в компьютерной программе порой становится причиной дорогих или опасных сбоев в работе управляемого программой оборудования. К примеру, 21 сентября 1997 года в результате деления на ноль в компьютеризированной управляющей системе крейсера USS Yorktown (CG-48) Военно-морского флота США произошло отключение всего электронного оборудования в системе, в результате чего силовая установка корабля прекратила свою работу .

См. также

Примечания

Функция = 1 ⁄ . Когда стремится к нулю справа, стремится к бесконеч­ности; когда стремится к нулю слева, стремится к минус бесконечности

Если на обычном калькуляторе поделить какое-либо число на ноль, то он вам выдаст букву Е или слово Error, то есть «ошибка».

Калькулятор компьютера в аналогичном случае пишет (в Windows XP) : «Деление на нуль запрещено».

Всё согласуется с известным со школы правилом, что на ноль делить нельзя.

Разберёмся, почему.

Деление — это математическая операция, обратная умножению. Деление определяется через умножение.

Поделить число a (делимое, например 8) на число b (делитель, например число 2) — значит найти такое число x (частное), при умножении которого на делитель b получается делимое a (4 · 2 = 8), то есть a разделить на b значит решить уравнение x · b = a.

Уравнение a: b = x равносильно уравнению x · b = a.

Мы заменяем деление умножением: вместо 8: 2 = x пишем x · 2 = 8.

8: 2 = 4 равносильно 4 · 2 = 8

18: 3 = 6 равносильно 6 · 3 = 18

20: 2 = 10 равносильно 10 · 2 = 20

Результат деления всегда можно проверить умножением. Результатом умножения делителя на частное должно быть делимое.

Аналогично попробуем поделить на ноль.

Например, 6: 0 = … Нужно найти такое число, которое при умножении на 0 даст 6. Но мы знаем, что при умножении на ноль всегда получается ноль. Не существует числа, которое при умножении на ноль дало бы что-то другое кроме нуля.

Когда говорят, что на ноль делить нельзя или запрещено, то имеется в виду, что не существует числа, соответствующего результату такого деления (делить-то на ноль можно, разделить — нельзя:)).

Зачем в школе говорят, что на ноль делить нельзя?

Поэтому в определении операции деления a на b сразу подчёркивается, что b ≠ 0.

Если всё выше написанное вам показалось слишком сложным, то совсем на пальцах: Разделить 8 на 2 означает узнать, сколько нужно взять двоек, чтобы получилось 8 (ответ: 4). Поделить 18 на 3 означает узнать, сколько нужно взять троек, чтобы получить 18 (ответ: 6).

Поделить 6 на ноль означает узнать, сколько нужно взять нулей, чтобы получить 6. Сколько ни бери нулей, всё равно получится ноль, но никогда не получится 6, т. е. деление на ноль не определено.

Интересный результат получается, если попробовать поделить число на ноль на калькуляторе андроида. На экране отобразится ∞ (бесконечность) (или — ∞, если делите отрицательное число). Данный результат является неверным, т. к. не существует числа ∞. По-видимому, программисты спутали совершенно разные операции — деление чисел и нахождение предела числовой последовательности n/x, где x → 0. При делении же нуля на нуль будет написано NaN (Not a Number — Не число).

«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 - 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 - 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 - 3 — это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания.

Деление на ноль

Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль?

В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Функция «деление» не определена для области значений, в которой делитель равен нулю. Делить можно, но результат — не определён

Дельть на ноль нельзя. Математика 2 класса средней школы.

Если мне не изменяет память, то ноль можно представить как бесконечно малую величину, так что бесконечность будет. А школьное «ноль — ничего» — это просто упрощение, их таких в школьной математике ууууууу сколько) . Но без них никак, все в свое время.

Войдите, чтобы написать ответ

Деление на ноль

Частное от деления на ноль какого-либо числа, отличного от нуля, не существует.

Рассуждения здесь следующие: так как в этом случае никакое число не может удовлетворить определению частного.

Напишем, например,

какое бы число ни взять на пробу (скажем, 2, 3, 7), оно не годится потому что:

\[ 2 · 0 = 0 \]

\[ 3 · 0 = 0 \]

\[ 7 · 0 = 0 \]

Что будет если поделить на 0?

д., а нужно получить в произведении 2,3,7.

Можно сказать, что задача о делении на нуль числа, отличного от нуля, не имеет решения. Однако число, отличное от нуля, можно разделить, на число, как угодно близкое к нулю, и чем ближе делитель к нулю, тем больше будет частное. Так, если будем делить 7 на

\[ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000} \]

то получим частные 70, 700, 7000, 70 000 и т. д., которые неограниченно возрастают.

Поэтому часто говорят, что частное от деления 7 на 0 «бесконечно велико», или «равно бесконечности», и пишут

\[ 7: 0 = \infin \]

Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным 7 (или приближается к 7), то частное неограниченно увеличивается.

Число 0 можно представить, как некую границу, отделяющую мир реальных чисел от мнимых или отрицательных. Благодаря двусмысленному положению, многие операции с этой числовой величиной не подчиняются математической логике. Невозможность деления на нуль - яркий тому пример. А разрешенные арифметические действия с нулем могут быть выполнены с помощью общепринятых определений.

История нуля

Ноль является точкой отсчета во всех стандартных системах исчисления. Европейцы стали использовать это число сравнительно недавно, но мудрецы Древней Индии пользовались нулем за тысячу лет до того, как пустое число стало регулярно использоваться европейскими математиками. Ещё раньше индийцев ноль являлся обязательной величиной в числовой системе майя. Этот американский народ использовал двенадцатеричную систему исчисления, а нулем у них начинался первый день каждого месяца. Интересно, что у майя знак, обозначающий «ноль», полностью совпадал со знаком, определяющим «бесконечность». Таким образом, древние майя делали вывод о тождественности и непознаваемости этих величин.

Математические действия с нулем

Стандартные математические операции с нулем можно свести к нескольким правилам.

Сложение: если к произвольному числу добавить ноль, то оно не изменит своего значения (0+x=x).

Вычитание: при вычитании нуля из любого числа значение вычитаемого остается неизменным (x-0=x).

Умножение: любое число, умноженное на 0, дает в произведении 0 (a*0=0).

Деление: ноль можно разделить на любое число, не равное нулю. При этом значение такой дроби будет 0. А деление на ноль запрещено.

Возведение в степень. Это действие можно выполнить с любым числом. Произвольное число, возведенное в нулевую степень, даст 1 (x 0 =1).

Ноль в любой степени равен 0 (0 а =0).

При этом сразу возникает противоречие: выражение 0 0 не имеет смысла.

Парадоксы математики

О том, что деление на ноль невозможно, многие знают со школьной скамьи. Но объяснить причину такого запрета почему-то не получается. В самом деле, почему формула деления на ноль не существует, а вот другие действия с этим числом вполне разумны и возможны? Ответ на этот вопрос дают математики.

Все дело в том, что привычные арифметические действия, которые школьники изучают в начальных классах, на самом деле далеко не так равноправны, как нам кажется. Все простые операции с числами могут быть сведены к двум: сложению и умножению. Эти действия составляют суть самого понятия числа, а остальные операции строятся на использовании этих двух.

Сложение и умножение

Возьмем стандартный пример на вычитание: 10-2=8. В школе его рассматривают просто: если от десяти предметов отнять два, останется восемь. Но математики смотрят на эту операцию совсем по-другому. Ведь такой операции, как вычитание, для них не существует. Данный пример можно записать и другим способом: х+2=10. Для математиков неизвестная разность - это просто число, которое нужно добавить к двум, чтобы получилось восемь. И никакого вычитания здесь не требуется, нужно просто найти подходящее числовое значение.

Умножение и деление рассматриваются так же. В примере 12:4=3 можно понять, что речь идет о разделении восьми предметов на две равные кучки. Но в действительности это просто перевернутая формула записи 3х4=12.Такие примеры на деление можно приводить бесконечно.

Примеры на деление на 0

Вот тут и становится понемногу понятным, почему нельзя делить на ноль. Умножение и деление на ноль подчиняется своим правилам. Все примеры на деление этой величины можно сформулировать в виде 6:0=х. Но это же перевернутая запись выражения 6 * х=0. Но, как известно, любое число, умноженное на 0, дает в произведении только 0. Это свойство заложено в самом понятии нулевой величины.

Выходит, что такого числа, которое при умножении на 0 дает какую-либо осязаемую величину, не существует, то есть данная задача не имеет решения. Такого ответа бояться не следует, это естественный ответ для задач такого типа. Просто запись 6:0 не имеет никакого смысла, и она ничего не может объяснить. Кратко говоря, это выражение можно объяснить тем самым бессмертным «деление на ноль невозможно».

Существует ли операция 0:0? Действительно, если операция умножения на 0 законна, можно ли ноль разделить на ноль? Ведь уравнение вида 0х 5=0 вполне легально. Вместо числа 5 можно поставить 0, произведение от этого не поменяется.

Действительно, 0х0=0. Но поделить на 0 по-прежнему нельзя. Как было сказано, деление - это просто обратная операция умножения. Таким образом, если в примере 0х5=0, нужно определить второй множитель, получаем 0х0=5. Или 10. Или бесконечность. Деление бесконечности на ноль — как вам это понравится?

Но если в выражение подходит любое число, то оно не имеет смысла, мы не можем из бесконечного множества чисел выбрать какое-то одно. А раз так, это значит и выражение 0:0 не имеет смысла. Получается, что на ноль нельзя делить даже сам ноль.

Высшая математика

Деление на ноль — это головная боль для школьной математики. Изучаемый в технических вузах математический анализ немного расширяет понятие задач, которые не имеют решения. Например, к уже известному выражению 0:0 добавляются новые, которые не имеют решения в школьных курсах математики:

  • бесконечность, разделенная на бесконечность: ∞:∞;
  • бесконечность минус бесконечность: ∞−∞;
  • единица, возведенная в бесконечную степень: 1 ∞ ;
  • бесконечность, умноженная на 0: ∞*0;
  • некоторые другие.

Элементарными методами решить такие выражения невозможно. Но высшая математика благодаря дополнительным возможностям для ряда подобных примеров дает конечные решения. Особенно это видно в рассмотрении задач из теории пределов.

Раскрытие неопределенности

В теории пределов значение 0 заменяется условной бесконечно малой переменной величиной. А выражения, в которых при подставлении нужного значения получается деление на ноль, преобразовываются. Ниже представлен стандартный пример раскрытия предела при помощи обычных алгебраических преобразований:

Как видно в примере, простое сокращение дроби приводит ее значение к вполне рациональному ответу.

При рассмотрении пределов тригонометрических функций их выражения стремятся свести к первому замечательному пределу. При рассмотрении пределов, в которых знаменатель обращается в 0 при подставлении предела, используют второй замечательный предел.

Метод Лопиталя

В некоторых случаях пределы выражений можно заменить пределом их производных. Гийом Лопиталь - французский математик, основоположник французской школы математического анализа. Он доказал, что пределы выражений равны пределам производных этих выражений. В математической записи его правило выглядит следующим образом.

На данном уроке будет рассмотрено, как выполнять умножение и деление на числа вида 10, 100, 0,1, 0,001. Также будут решены различные примеры на данную тему.

Упражнение. Как умножить число 25,78 на 10?

Десятичная запись данного числа - это сокращенная запись суммы. Необходимо расписать ее более подробно:

Таким образом, нужно умножить сумму. Для этого можно просто умножить каждое слагаемое:

Выходит, что.

Можно сделать вывод, что умножить десятичную дробь на 10 очень просто: нужно запятую сдвинуть вправо на одну позицию.

Упражнение. Умножить 25,486 на 100.

Умножить на 100 - это то же самое, что и умножить два раза на 10. Иными словами, необходимо сдвинуть запятую вправо два раза:

Упражнение. Разделить 25,78 на 10.

Как и в предыдущем случае, необходимо представить число 25,78 в виде суммы:

Так как нужно поделить сумму, то это эквивалентно делению каждого слагаемого:

Выходит, чтобы разделить на 10, нужно запятую сдвинуть влево на одну позицию. Например:

Упражнение. Разделить 124,478 на 100.

Разделить на 100 - это то же самое, что два раза разделить на 10, поэтому запятая сдвигается влево на 2 позиции:

Если десятичную дробь нужно умножить на 10, 100, 1000 и так далее, нужно запятую сдвинуть вправо на столько позиций, сколько нулей у множителя.

И наоборот, если десятичную дробь нужно поделить на 10, 100, 1000 и так далее, нужно запятую сдвинуть влево на столько позиций, сколько нулей у множителя.

Пример 1

Умножить на 100 значит сдвинуть запятую вправо на две позиции.

После сдвига можно обнаружить, что после запятой уже нет цифр, а это значит, что дробная часть отсутствует. Тогда и запятая не нужна, число получилось целое.

Пример 2

Сдвигать нужно на 4 позиции вправо. Но цифр после запятой всего две. Стоит вспомнить, что для дроби 56,14 есть эквивалентная запись.

Теперь умножить на 10 000 не составляет труда:

Если не очень понятно, почему можно дописать два нуля к дроби в предыдущем примере, то дополнительное видео по ссылке сможет помочь в этом.

Эквивалентные десятичные записи

Запись 52 означает следующее:

Если впереди поставить 0, получим запись 052. Эти записи эквивалентны.

Можно ли поставить два нуля впереди? Да, эти записи эквивалентны.

Теперь посмотрим на десятичную дробь:

Если приписать ноль, то получается:

Эти записи эквивалентны. Аналогично можно приписать несколько нулей.

Таким образом, к любому числу можно приписать несколько нулей после дробной части и несколько нулей перед целой частью. Это будут эквивалентные записи одного и того же числа.

Пример 3

Так как происходит деление на 100, то необходимо сдвинуть запятую на 2 позиции влево. Слева от запятой не осталось цифр. Целая часть отсутствует. Такую запись часто используют программисты. В математике же, если целой части нет, то ставят ноль вместо нее.

Пример 4

Сдвигать нужно влево на три позиции, но позиций всего две. Если перед числом написать несколько нулей, то это будет эквивалентная запись.

То есть при сдвиге влево, если цифры кончились, необходимо восполнить их нулями.

Пример 5

В данном случае стоит помнить, что запятая всегда стоит после целой части. Тогда:

Умножение и деление на числа 10, 100, 1000 - очень простая процедура. Точно так же дело обстоит и с числами 0,1, 0,01, 0,001.

Пример . Умножить 25,34 на 0,1.

Выполним запись десятичной дроби 0,1 в виде обыкновенной. Но умножить на - то же самое, что разделить на 10. Поэтому необходимо сдвинуть запятую на 1 позицию влево:

Аналогично умножить на 0,01 - это разделить на 100:

Пример. 5,235 разделить на 0,1.

Решение данного примера строится аналогичным образом: 0,1 выражается в виде обыкновенной дроби, а делить на - это все равно, что умножить на 10:

То есть чтобы поделить на 0,1, нужно запятую сдвинуть вправо на одну позицию, что равносильно умножению на 10.

Умножить на 10 и разделить на 0,1 - это одно и то же. Запятую нужно сдвинуть вправо на 1 позицию.

Разделить на 10 и умножить на 0,1 - это одно и то же. Запятую нужно сдвинуть вправо на 1 позицию:

В математике число ноль занимает особое место. Дело в том, что оно, по сути дела, означает «ничто», «пустоту», однако его значение действительно трудно переоценить. Для этого достаточно вспомнить хотя бы то, что именно с нулевой отметк и начинается отсчет координат положения точки в любой системе координат.

Ноль широко используется в десятичных дробях для определения значений «пустых» разрядов, находящихся как до, так и после запятой. Кроме того, именно с ним связано одно из основополагающих правил арифметики, гласящее о том, что на ноль делить нельзя. Его логика, собственно говоря, проистекает из самой сути этого числа: действительно, невозможно представить, чтобы некая отличное от него значение (да и само оно – тоже) было разделено на «ничто».

Примеры вычисления

С нулем осуществляются все арифметические действия, причем в качестве его «партнеров» по ним могут использоваться целые числа, обычные и десятичные дроби, причем все они могут иметь как положительное, так и отрицательное значение. Приведем примеры их осуществления и некоторые пояснения к ним.

СЛОЖЕНИЕ

При прибавлении нуля к некоторому числу (как целому, так и к дробному, как к положительному, так и к отрицательному) его значение остается абсолютно неизменным.

Пример 1

Двадцать четыре плюс ноль равняется двадцать четыре.

Пример 2

Семнадцать целых три восьмых плюс ноль равняется семнадцать целых три восьмых.

УМНОЖЕНИЕ

При умножении любого числа (целого, дробного, положительного или отрицательного) на ноль получается ноль .

Пример 1

Пятьсот восемьдесят шесть умножить на ноль равняется ноль .

Пример 2

Ноль умножить на сто тридцать пять целых шесть седьмых равняется ноль .

Пример 3

Ноль умножить на ноль равняется ноль .

ДЕЛЕНИЕ

Правила деления чисел друг на друга в тех случаях, когда одно из них представляет собой ноль, различаются в зависимости от того, в какой именно роли выступает сам ноль: делимого или делителя?

В тех случаях, когда ноль представляет собой делимое, результат всегда равен ему же, причем вне зависимости от значения делителя.

Пример 1

Ноль разделить на двести шестьдесят пять равняется ноль .

Пример 2

Ноль разделить на семнадцать пятьсот девяносто шестых равняется ноль .

0: = 0

Делить ноль на ноль согласно правилам математики нельзя. Это означает, что при совершении такой процедуры частное является неопределенным. Таким образом, теоретически оно может представлять собой абсолютно любое число.

0: 0 = 8 ибо 8 × 0 = 0

В математике такая задача, как деление нуля на ноль , не имеет никакого смысла, поскольку ее результат представляет собой бесконечное множество. Это утверждение, однако, справедливо в том случае, если не указаны никакие дополнительные данные, которые могут повлиять на итоговый результат.

Таковые, при их наличии, должны состоять в том, чтобы указывать на степень изменения величины как делимого, так и делителя, причем еще до наступления того момента, когда они превратились в ноль . Если это определено, то такому выражению, как ноль разделить на ноль , в подавляющем большинстве случаев можно придать некий смысл.