Уход за телом

Потенциал действия. Фазы потенциала действия нервного волокна. Что называется потенциалом действия

Потенциал действия. Фазы потенциала действия нервного волокна. Что называется потенциалом действия

Потенциал действия (ПД) - это кратковременные высоко амплитуды и изменения МПС, возникающих при возбуждении. Основной причиной ПД является изменение проницаемости мембраны для ионов.
Рассмотрим развитие ПД на примере нервного волокна. Регистрировать ПД можно при введении одного из электродов в волокно или располагая оба электрода на его поверхности. Проследим процесс формирования ПД при внутриклеточном методе.
1. В состоянии покоя мембрана поляризована и МПС равен 90 мВ.
2. Как только начинается возбуждение, величина этого потенциала уменьшается (это уменьшение называется деполяризацией). В ряде случаев потенциал сторон мембраны меняется на противоположный (так называемый овершут). Это первая стадия ПД - деполяризация.
3. Стадия реполяризации, при которой величина разности потенциалов падает почти до первоначального уровня. Эти две фазы в пиком ПД.
4. После пика наблюдаются следовые потенциалы - следовая деполяризация и следовая гиперполяризация (гиперполяризация - увеличение разности потенциалов между сторонами мембраны). Например, было 90 мВ, а становится 100 мВ.
Развивается ПД очень быстро - за несколько миллисекунд. Параметры ПД: 1) переменный характер, поскольку меняется направление движения тока, 2) величина, которая благодаря овершута может превышать МПС; 3) время, в течение которого развиваются ПД и отдельные его стадии - деполяризация, реполяризация, следовая гиперполяризация.
Как формируется ПД. В состоянии покоя «ворота» потенциалзависимых Na +-каналов закрыты. Закрытые также «ворота» потенциалзависимых К +-каналов.
1. Во время фазы деполяризации происходит активизация Na +-Kaналив. При этом изменяется конформационный состояние белков, входящих в состав «ворот». Эти «ворота» открываются, и проницаемость мембраны для Na + увеличивается в несколько тысяч раз. Na + лавообразные входит в волокно нерва. В настоящее время К +-каналы открываются очень медленно. Так, в волокно поступает значительно больше Na +, чем выводится из него К +.
2. Реполяризация характеризуется закрытием Na +-каналов. «Ворота» на внутренней поверхности мембраны закрываются - наблюдается инактивация каналов под воздействием электрических потенциалов. Инактивация происходит медленнее, чем активация. В настоящее время ускоряется активация К +-каналов и растет диффузия К + наружу.
Таким образом, деполяризация связана преимущественно со входом Na + в волокно, а реполяризация - с выходом из него К +. Соотношение между входом Na + и выходом К + изменяется в процессе раз «витке ПД: в начале ПД входит Na + в несколько тысяч раз больше, чем получается К +, а затем выходит более К +, чем входит Na +.
Причиной следовых потенциалов дальнейшие изменения соотношения между этими двумя процессами. Во время следовой гиперполяризации много К +-каналов еще остаются открытыми и К + продолжает выходить наружу.
Восстановление ионных градиентов после ПД. Одиночные ПД изменяют разность концентраций ионов в нервном волокне и за его пределами очень мало. Но в тех случаях, когда проходит значительное количество импульсов, эта разница может быть весьма существенной.
Восстановление ионных градиентов происходит тогда за счет усиления работы Na + / K +-HacociB - в большей степени нарушается этот градиент, тем интенсивнее работают насосы. При этом используется энергия АТФ. Часть ее выделяется в виде тепла, поэтому в этих случаях наблюдается кратковременное повышение температуры волокна.
Условия необходимые для возникновения ПД. ПД возникает лишь при определенных условиях. Раздражители, действующие на волокну, могут быть разными. Чаще используется постоянный электрический ток. Он легко дозируется, мало травмирует ткань и ближайший тех раздражителей, которые существуют в живых организмах.
При каких условиях постоянный ток может зумовитК появление ПД? Ток должен быть достаточно сильным, действовать определенное время, его нарастание должно быть быстрым. Наконец, имеет значение и направление тока (действие анода или катода).
В зависимости от силы различают подпороговый (недостаточный для возникновения возбуждения), пороговый (достаточный) и надпороговый (чрезмерный) ток.
Несмотря на то что подпороговый ток не вызывает возбуждение, он все же деполяризует мембрану, и эта деполяризация тем больше, чем выше его напряжение.
Деполяризация, развивающийся при этом, называется локальным ответом и является видом местного возбуждения. Оно характеризуется тем, что не распространяется, величина его зависит от силы раздражения (закрном силовых отношений: чем больше сила раздражения, тем активнее ответ). При локальной ответа возбудимость ткани повышается. Возбудимость - это способность отвечать на раздражение и переходить в состояние возбуждения.
Если сила раздражителя достаточное (пороговая), то деполяризация достигает определенной величины, называется критическим уровнем деполяризации (Ек). Для нервного волокна, покрытого миелином, Ек составляет около 65 мВ. Таким образом, разница между МПС (Е0), равный в данном случае 90 мВ, и Ек составляет 25 мВ. Эта величина (ДЕ = Е0-Ек) очень важна для характеристики возбудимости ткани.
Когда Е0 увеличивается при деполяризации, возбудимость выше и, наоборот, снижение Е0 при гиперполяризации приводит к ее уменьшению. ГДЕ может зависеть не только от величины Е0, но и от критического уровня деполяризации (Ек).
При пороговой силе раздражителя возникает ПД. Это уже не местное возбуждение, оно способно распространяться на дальние расстояния, подлежит закону «все или ничего» (при увеличении силы раздражителя амплитуда ПД не растет). Возбудимость при развитии ПД отсутствует или значительно снижена.
ПД является одним из показателей возбуждения - активного физиологического процесса, которым живые клетки (нервные, мышечные, железистые) отвечают на раздражение. Во время возбуждения меняются метаболизм, температура клеток, нарушается ионная равновесие между цитоплазмой и внешней средой, происходит ряд других процессов.
Кроме силы постоянного тока, возникновения ПД зависит также от длительности его действия. Существует обратная пропорциональная зависимость между силой тока и длительностью его действия. Подпороговый ток даже при очень длительном воздействии не приведет возбуждения. Надпороговый ток при слишком короткой действия также не приведет к возбуждению.
Для возникновения возбуждения требуется также определенная скорость (крутизна) нарастание силы тока.
Если повышать силу тока очень медленно, то при этом будет меняться Ек и Е0 может не достичь его уровня.
Имеет значение и направление тока: ПД возникает при замыкании тока только тогда, когда катод помещается на внешней поверхности мембраны, а анод - в клетке или волокне. При прохождении тока изменяется МП. Если на поверхности лежит катод, то развивается деполяризация (возбудимость повышается), а если анод - гиперполяризация (возбудимость снижается). Знание механизмов действия электрического тока на живые объекты крайне необходимо для разработки и применения в клинике методов физиотерапии (диатермия, УВЧ, гипергидроз и др.)..
Изменение возбудимости при ПД. При локальной ответа возбудимость повышается (ДЭ уменьшается). Изменения возбудимости во время самого ПД можно заметить, если раздражать повторно в разные стадии развития ПД. Оказывается, что во время пика даже очень сильное повторное раздражение остается без ответа (период абсолютной рефрактерности). Затем возбудимость постепенно нормализуется, но она все же ниже, чем начальная (период относительной рефрактерности).
При выраженной следовой деполяризации возбудимость выше, чем первоначальная, а при положительной следового потенциала возбудимость снова снижается. Абсолютная рефрактерность объясняется инактивизациею Na + каналов и повышением проводимости К + - каналов. При относительной рефрактерности вновь активизируются Na + - каналы и снижается правиднисть К + - каналов.
Двухфазный характер ПД. Обычно в условиях, когда микроэлектрод содержится внутри клетки или волокна, наблюдается однофазный ПД. Иная картина бывает в тех случаях, когда оба электрода лежат на внешней поверхности мембраны - биполярная регистрация. Возбуждение, которое представляет собой волну электроотрицательности, перемещаясь по мембране, доходит сначала до одного электрода, затем помещается между электродами, наконец достигает второго электрода, а затем распространяется дальше. В этих условиях ПД имеет двухфазный характер. Регистрация ПД широко используется в клинике для диагностики

Потенциа́л де́йствия - волна возбуждения , перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки (нейрона иликардиомиоцита ), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, в то время, как в покое она заряжена положительно. Потенциал действия является физиологической основой нервного импульса.

Благодаря работе «калий-натриевого насоса » концентрация ионов натрия в цитоплазме клетки очень мала по сравнению с окружающей средой. При проведении потенциала действия открываются потенциал-зависимые натриевые каналы и положительно заряженные ионы натрия поступают в цитоплазму по градиенту концентрации , пока он не будет уравновешен положительным электрическим зарядом. Вслед за этим потенциал-зависимые каналы инактивируются и отрицательный потенциал покоя восстанавливается за счёт диффузии в клетку отрицательно заряженных ионов хлора, концентрация которых в окружающей среде также значительно выше внутриклеточной.

Фазы потенциала действия

    Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

    Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

    Отрицательный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

    Положительный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

Общие положения

Рис. 2. A. Схематичное изображение идеализированного потенциала действия. B. Реальный потенциал действия пирамидного нейрона гиппокампа крысы. Форма реального потенциала действия обычно отличается от идеализированной.

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя . Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы , и анионы . Снаружи - на порядок больше ионов натрия , кальция и хлора , внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов , сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий черезсинапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике , так что потенциал действия не распространяется на дендриты).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Распространение потенциала действия

По немиелинизированным волокнам

По немиелинизированному волокну потенциал действия распространяется непрерывно. Проведение нервного импульса начинается с распространениемэлектрического поля . Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до критического уровня, в результате чего на соседнем участке генерируются новые потенциалы. Сам потенциал действия не перемещается, он исчезает там же, где возник. Главную роль в возникновении нового потенциал действия играет предыдущий.

Если внутриклеточным электродом раздражать аксон посередине, то потенциал действия будет распространяться в обоих направлениях. Обычно же потенциал действия распространяется по аксону в одном направлении (от тела нейрона к нервным окончаниям), хотя деполяризация мембраны происходит по обе стороны от участка, где в данный момент возник потенциал. Одностороннее проведение потенциала действия обеспечивается свойствами натриевых каналов - после открытия они на некоторое время инактивируются и не могут открыться ни при каких значениях мембранного потенциала (свойство рефрактерности ). Поэтому на ближнем к телу клетки участке, где до этого уже «прошел» потенциал действия, он не возникает.

При прочих равных условиях распространение потенциала действия по аксону происходит тем быстрее, чем больше диаметр волокна. По гигантским аксонам кальмара потенциал действия может распространяться почти с такой же скоростью, как и по миелинизированным волокнам позвоночных (около 100 м/c).

По миелинизированным волокнам

По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение ). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье ; здесь их плотность в 100 раз больше, чем в мембранах безмиелиновых волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до критического уровня, что приводит к возникновению в них новых потенциал действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-ий, 4-й и даже 5-й, посколькуэлектроизоляция , создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля.

«Скачкообразное распространение» увеличивает скорость распространения потенциала действия по миелинизированным волокнам по сравнению с немиелинизированными. Кроме того, миелинизированные волокна толще, а электрическое сопротивление более толстых волокон меньше, что тоже увеличивает скорость проведения импульса по миелинизированным волокнам. Другим преимуществом сальтаторного проведения является его экономичность в энергетическом плане, так как возбуждаются только перехваты Ранвье, площадь которых меньше 1 % мембраны, и, следовательно, необходимо значительно меньше энергии для восстановления трансмембранных градиентов Na + и K + , расходующихся в результате возникновения потенциал действия, что может иметь значение при высокой частоте разрядов, идущих по нервному волокну.

Чтобы представить, насколько эффективно может быть увеличена скорость проведения за счёт миелиновой оболочки, достаточно сравнить скорость распространения импульса по немиелинизированным и миелинизированным участкам нервной системы человека. При диаметре волокна около 2 µм и отсутствии миелиновой оболочки скорость проведения будет составлять ~1 м/с, а при наличии даже слабой миелинизации при том же диаметре волокна - 15-20 м/с. В волокнах большего диаметра, обладающих толстой миелинововой оболочкой, скорость проведения может достигать 120 м/с.

Скорость распространения потенциала действия по мембране отдельно взятого нервного волокна не является постоянной величиной - в зависимости от различных условий, эта скорость может очень значительно уменьшаться и, соответственно, увеличиваться, возвращаясь к некоему исходному уровню.

Активные свойства мембраны

Схема строения мембраны клетки.

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основываются главным образом на поведении потенциалзависимых натриевых (Na +) и калиевых (K +) каналов. Начальная фаза ПД формируется входящим натриевым током, позже открываются калиевые каналы и выходящий K + -ток возвращает потенциал мембраны к исходному уровню. Исходную концентрацию ионов затем восстанавливает натрий-калиевый насос .

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и высчиляется черезкоэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Ходжкином и Хаксли.

Потенциал действия (ПД) - это кратковременные высоко амплитуды и изменения МПС, возникающих при возбуждении. Основной причиной ПД является изменение проницаемости мембраны для ионов. Рассмотрим развитие ПД на примере нервного волокна. Регистрировать ПД можно при введении одного из электродов в волокно или располагая оба электрода на его поверхности. Проследим процесс формирования ПД при внутриклеточном методе. 1. В состоянии покоя мембрана поляризована и МПС равен 90 мВ. 2. Как только начинается возбуждение, величина этого потенциала уменьшается (это уменьшение называется деполяризацией). В ряде случаев потенциал сторон мембраны меняется на противоположный (так называемый овершут). Это первая стадия ПД - деполяризация. 3. Стадия реполяризации, при которой величина разности потенциалов падает почти до первоначального уровня. Эти две фазы в пиком ПД. 4. После пика наблюдаются следовые потенциалы - следовая деполяризация и следовая гиперполяризация (гиперполяризация - увеличение разности потенциалов между сторонами мембраны). Например, было 90 мВ, а становится 100 мВ. Развивается ПД очень быстро - за несколько миллисекунд. Параметры ПД: 1) переменный характер, поскольку меняется направление движения тока, 2) величина, которая благодаря овершута может превышать МПС; 3) время, в течение которого развиваются ПД и отдельные его стадии - деполяризация, реполяризация, следовая гиперполяризация. Как формируется ПД. В состоянии покоя «ворота» потенциалзависимых Na +-каналов закрыты. Закрытые также «ворота» потенциалзависимых К +-каналов. 1. Во время фазы деполяризации происходит активизация Na +-Kaналив. При этом изменяется конформационный состояние белков, входящих в состав «ворот». Эти «ворота» открываются, и проницаемость мембраны для Na + увеличивается в несколько тысяч раз. Na + лавообразные входит в волокно нерва. В настоящее время К +-каналы открываются очень медленно. Так, в волокно поступает значительно больше Na +, чем выводится из него К +. 2. Реполяризация характеризуется закрытием Na +-каналов. «Ворота» на внутренней поверхности мембраны закрываются - наблюдается инактивация каналов под воздействием электрических потенциалов. Инактивация происходит медленнее, чем активация. В настоящее время ускоряется активация К +-каналов и растет диффузия К + наружу. Таким образом, деполяризация связана преимущественно со входом Na + в волокно, а реполяризация - с выходом из него К +. Соотношение между входом Na + и выходом К + изменяется в процессе раз «витке ПД: в начале ПД входит Na + в несколько тысяч раз больше, чем получается К +, а затем выходит более К +, чем входит Na +. Причиной следовых потенциалов дальнейшие изменения соотношения между этими двумя процессами. Во время следовой гиперполяризации много К +-каналов еще остаются открытыми и К + продолжает выходить наружу. Восстановление ионных градиентов после ПД. Одиночные ПД изменяют разность концентраций ионов в нервном волокне и за его пределами очень мало. Но в тех случаях, когда проходит значительное количество импульсов, эта разница может быть весьма существенной. Восстановление ионных градиентов происходит тогда за счет усиления работы Na + / K +-HacociB - в большей степени нарушается этот градиент, тем интенсивнее работают насосы. При этом используется энергия АТФ. Часть ее выделяется в виде тепла, поэтому в этих случаях наблюдается кратковременное повышение температуры волокна. Условия необходимые для возникновения ПД. ПД возникает лишь при определенных условиях. Раздражители, действующие на волокну, могут быть разными. Чаще используется постоянный электрический ток. Он легко дозируется, мало травмирует ткань и ближайший тех раздражителей, которые существуют в живых организмах. При каких условиях постоянный ток может зумовитК появление ПД? Ток должен быть достаточно сильным, действовать определенное время, его нарастание должно быть быстрым. Наконец, имеет значение и направление тока (действие анода или катода). В зависимости от силы различают подпороговый (недостаточный для возникновения возбуждения), пороговый (достаточный) и надпороговый (чрезмерный) ток. Несмотря на то что подпороговый ток не вызывает возбуждение, он все же деполяризует мембрану, и эта деполяризация тем больше, чем выше его напряжение. Деполяризация, развивающийся при этом, называется локальным ответом и является видом местного возбуждения. Оно характеризуется тем, что не распространяется, величина его зависит от силы раздражения (закрном силовых отношений: чем больше сила раздражения, тем активнее ответ). При локальной ответа возбудимость ткани повышается. Возбудимость - это способность отвечать на раздражение и переходить в состояние возбуждения. Если сила раздражителя достаточное (пороговая), то деполяризация достигает определенной величины, называется критическим уровнем деполяризации (Ек). Для нервного волокна, покрытого миелином, Ек составляет около 65 мВ. Таким образом, разница между МПС (Е0), равный в данном случае 90 мВ, и Ек составляет 25 мВ. Эта величина (ДЕ = Е0-Ек) очень важна для характеристики возбудимости ткани. Когда Е0 увеличивается при деполяризации, возбудимость выше и, наоборот, снижение Е0 при гиперполяризации приводит к ее уменьшению. ГДЕ может зависеть не только от величины Е0, но и от критического уровня деполяризации (Ек). При пороговой силе раздражителя возникает ПД. Это уже не местное возбуждение, оно способно распространяться на дальние расстояния, подлежит закону «все или ничего» (при увеличении силы раздражителя амплитуда ПД не растет). Возбудимость при развитии ПД отсутствует или значительно снижена. ПД является одним из показателей возбуждения - активного физиологического процесса, которым живые клетки (нервные, мышечные, железистые) отвечают на раздражение. Во время возбуждения меняются метаболизм, температура клеток, нарушается ионная равновесие между цитоплазмой и внешней средой, происходит ряд других процессов. Кроме силы постоянного тока, возникновения ПД зависит также от длительности его действия. Существует обратная пропорциональная зависимость между силой тока и длительностью его действия. Подпороговый ток даже при очень длительном воздействии не приведет возбуждения. Надпороговый ток при слишком короткой действия также не приведет к возбуждению. Для возникновения возбуждения требуется также определенная скорость (крутизна) нарастание силы тока. Если повышать силу тока очень медленно, то при этом будет меняться Ек и Е0 может не достичь его уровня. Имеет значение и направление тока: ПД возникает при замыкании тока только тогда, когда катод помещается на внешней поверхности мембраны, а анод - в клетке или волокне. При прохождении тока изменяется МП. Если на поверхности лежит катод, то развивается деполяризация (возбудимость повышается), а если анод - гиперполяризация (возбудимость снижается). Знание механизмов действия электрического тока на живые объекты крайне необходимо для разработки и применения в клинике методов физиотерапии (диатермия, УВЧ, гипергидроз и др.).. Изменение возбудимости при ПД. При локальной ответа возбудимость повышается (ДЭ уменьшается). Изменения возбудимости во время самого ПД можно заметить, если раздражать повторно в разные стадии развития ПД. Оказывается, что во время пика даже очень сильное повторное раздражение остается без ответа (период абсолютной рефрактерности). Затем возбудимость постепенно нормализуется, но она все же ниже, чем начальная (период относительной рефрактерности). При выраженной следовой деполяризации возбудимость выше, чем первоначальная, а при положительной следового потенциала возбудимость снова снижается. Абсолютная рефрактерность объясняется инактивизациею Na + каналов и повышением проводимости К + - каналов. При относительной рефрактерности вновь активизируются Na + - каналы и снижается правиднисть К + - каналов. Двухфазный характер ПД. Обычно в условиях, когда микроэлектрод содержится внутри клетки или волокна, наблюдается однофазный ПД. Иная картина бывает в тех случаях, когда оба электрода лежат на внешней поверхности мембраны - биполярная регистрация. Возбуждение, которое представляет собой волну электроотрицательности, перемещаясь по мембране, доходит сначала до одного электрода, затем помещается между электродами, наконец достигает второго электрода, а затем распространяется дальше. В этих условиях ПД имеет двухфазный характер. Регистрация ПД широко используется в клинике для диагностики заболеваний сердца, мозга, опорно-двигательного аппарата, желудка и др.

Потенциал действия . Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электроотрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию и следовую гиперполяризацию. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.Следовые потенциалы непостоянны, и в разных тканях могут проявляться только следовой деполяризацией или только следовой гиперполяризацией, последовательность их проявления тоже может быть различной.

Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К+ превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na+. Поэтому мембрана в покое снаружи заряжена положительно.

При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К+ Поэтому поток ионов Na+ в клетку начинает значительно превышать направленный наружу поток К+. Ток Na+ достигает величины +150 мв. Одновременно несколько уменьшается выход К+ из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

Повышение проницаемости мембраны для ионов Na+ продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na+-каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса.

Условия возникновения возбуждения . Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10 -9 А.

Таким образом, главным условием для возникновения ПД является следующее : мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

Закон "все или ничего". ПД подчиняется закону "все или ничего". При изучении зависимости эффектов раздражения от силы приложенного стимула был установлен т.н. закон "все или ничего". Согласно этому закону, подпороговые раздражения не вызывают возбуждения ("ничего"), при пороговых же стимулах возбуждение сразу приобретает максимальную величину ("все"), и уже не возрастает при дальнейшем усилении раздражителя.

Эта закономерность первоначально была открыта Боудичем при исследовании сердца, а в дальнейшем подтверждена и на других возбудимых тканях. Долгое время закон "все или ничего" неправильно интерпретировался как общий принцип реагирования возбудимых тканей. Предполагали, что "ничего" означает полное отсутствие ответа на под пороговый стимул, а "все" рассматривалось как проявление полного исчерпания возбудимым субстратом его потенциальных возможностей. Дальнейшие исследования, в особенности микроэлектродные, показали, что эта точка зрения не соответствует действительности. Выяснилось, что при под пороговых силах возникает местное не распространяющееся возбуждение (локальный ответ). Вместе с тем оказалось, что "все" также не характеризует того максимума, которого может достигнуть ПД. В живой клетке существуют процессы, активно приостанавливающие деполяризацию мембраны. Если каким-либо воздействием на нервное волокно, например, наркотиками, ядами, ослабить входящий Na-ток, обеспечивающий генерацию ПД, то он перестает подчиняться правилу "все или ничего" - его амплитуда начинает градуально зависеть от силы стимула. Поэтому "все или ничего" рассматривается сейчас не как всеобщий закон реагирования возбудимого субстрата на раздражитель, а лишь как правило, характеризующее особенности возникновения ПД в данных конкретных условиях.

Потенциал действия (ПД) - это электрофизиологичес-кий процесс, выражающийся в быстром колебании мембранно-го потенциала вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервны-ми клетками, нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения.

А. Характеристика потенциала действия (ПД). Схема-тично ПД представлен на рис. 1.3. Величина ПД колеблется в пре-делах 80-130 мВ, длительность пика ПД нервного волокна 0,5-1 мс, волокна скелетной мышцы - до 10 мс с учетом замедления деполяризации в конце ее. Длительность ПД сердечной мышцы , 300-400 мс. Амплитуда ПД не зависит от силы раздражения - она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений - закону силы. ПД либо совсем не возникает при раздражении клетки, если оно мало, либо возникает и достига-ет максимальной величины, если раздражение является пороговым или сверхпороговым.

Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчи-няется закону силы - с увеличением силы стимула величина его возрастает.

В составе ПД различают четыре фазы:

1 — деполяриза-ция , т. е. исчезновение заряда клетки - уменьшение мембранного потенциала до нуля;

2 — инверсия , т. е. изменение заряда клетки на противоположный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (лат. шуегзю - переворачивание);

3 — реполяризация, т. е. восстанов-ление исходного заряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная -положительно;

4 - следовая гиперполяризация.

Б. Механизм возникновения ПД. Если действие раздражи-теля на клеточную мембрану приводит к началу развития ПД, да-лее сам процесс развития ПД вызывает фазовые изменения прони-цаемости клеточной мембраны, что обеспечивает быстрое движение № + в клетку, а К + - из клетки. Это наиболее часто встре-чаемый вариант возникновения ПД. Величина мембранного потен-циала при этом сначала уменьшается, а затем снова восстанавли-вается до исходного уровня.

На экране осциллографа отмеченные изменения мембранного потенциала предстают в виде пикового по-тенциала - ПД. Он возникает вследствие накопленных и поддер-живаемых ионными насосами градиентов концентраций ионов внут-ри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов ионов. Если заблокировать процесс выработки энергии, потенциалы действия некоторый период вре-мени будут возникать. Но после исчезновения градиентов концен-траций ионов (устранения потенциальной энергии) клетка генери-ровать ПД не будет. Рассмотрим фазы ПД.


1. Фаза деполяризации (см. рис. 1.3 - 1). При действии депо-ляризующего раздражителя на клетку (медиатор, электрический ток) начальная частичная деполяризация клеточной мембраны про-исходит без изменения ее проницаемости для ионов. Когда деполя-ризация достигает примерно 50% пороговой величины (50% поро-гового потенциала), начинает повышаться проницаемость мембраны клетки для Ыа + , причем в первый момент сравнительно медленно.

Естественно, что скорость входа Ыа + в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполя-ризации), движущей силой, обеспечивающей вход Гч!а + в клетку, являются концентрационный и электрический градиенты. Напом-ним, что клетка внутри заряжена отрицательно (разноименные за-ряды притягиваются друг к другу), а концентрация № + вне клетки в 10-12 раз больше, чем внутри клетки.

Условием, обеспечиваю-щим вход № + в клетку, является увеличение проницаемости кле-точной мембраны, которая определяется состоянием воротного ме-ханизма Ыа-каналов (в некоторых клетках, например, в кардиомиоцитах, в волокнах гладкой мышцы, важную роль в воз-никновении ПД играют и управляемые каналы для Са 2+).

Когда деполяризация клетки достигает критической величины (Е, критический уровень деполяризации - КУД), которая обычно составляет 50 мВ (возможны и другие величины), проницаемость мембраны для Ыа* резко возрастает - открывается большое число потенциалзависимых ворот Ыа-каналов - и Ыа + лавиной устремля-ется в клетку.

В результате интенсивного тока Ыа + внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Ыа + - открываются все новые и новые ворота №-каналов, что придает току Ыа + в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Ыа + в клетку продолжается, поэтому число положительных ионов в клетке пре-восходит число отрицательных ионов, заряд внутри клетки стано-вится положительным, снаружи - отрицательным. Процесс пере-зарядки мембраны представляет собой вторую фазу потенциала действия - фазу инверсии (рис. 1.3 - 2).

Теперь электрический градиент препятствует входу Ыа + внутрь клетки (положительные заряды отталкиваются друг от друга), Ыа-проводимость снижает-ся. Тем не менее, некоторый период времени (доли миллисекунды) № + продолжает входить в клетку — об этом свидетельствует про-должающееся нарастание ПД. Это означает, что концентрацион-ный градиент, обеспечивающий движение № + в клетку, сильнее электрического, препятствующего входу Ыа + в клетку.

Во время деполяризации мембраны увеличивается проницаемость ее и для Са 2+ , он также идет в клетку, но в нервных волокнах, нейронах и в клетках скелетной мускулатуры роль Са 2+ в развитии ПД мал.а. В клетках гладкой мышцы и миокарда его роль существенна. Та-ким образом, вся восходящая часть пика ПД в большинстве случа-ев обеспечивается в основном входом № + в клетку.

Примерно через 0,5-1 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается вслед-ствие закрытия ворот натриевых каналов и открытия ворот К-каналов, т. е. увеличения проницаемости для К + и резкого возрастания выхода его из клетки (см. рис. 1.3 - 2). Препятствуют также росту пика ПД электрический градиент Ыа + (клетка внутри в этот момент заряжена положительно), а также выход К + из клетки по каналам утечки.

Поскольку К + находится преимущественно внутри клетки, он, согласно концентрационному градиенту, быстро выходит из клетки после открытия ворот К + -каналов, вследствие чего умень-шается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. В фазу инверсии выходу К + из клетки способствует также и электрический градиент. К + вы-талкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки.

Так продолжается до пол-ного исчезновения положительного заряда внутри клетки (до кон-ца фазы инверсии - рис. 1.3-2, пунктирная линия), когда начина-ется следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, ворота которых от-крыты, но и по неуправляемым - каналам утечки, что несколько замедляет ход восходящей части ПД и ускоряет ход нисходящей составляющей ПД.

Таким образом, изменение мембранного потенциала покоя ве-дет к последовательному открытию и закрытию электроуправляе-мых ворот ионных каналов и движению ионов согласно электрохи-мическому градиенту - возникновению ПД. Все фазы являются регенеративными - необходимо только достичь критического уров-ня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т. е. вторич-но активно.

Амплитуда ПД складывается из величины ПП (мембранно-го потенциала покоящейся клетки) и величины фазы инверсии, составляющей у разных клеток 10-50 мВ. Если мембранный потенциал покоящейся клетки мал, амплитуда ПД этой клетки не-большая.

3. Фаза реполяризации (рис. 1.3-3) связана с тем, что про-ницаемость клеточной мембраны для К + все еще высока (во-рота калиевых каналов открыты), К + продолжает быстро выходить из клетки, согласно концентрационному градиенту. Поскольку клетка теперь уже снова внутри имеет отрицательный заряд, а сна-ружи - положительный (см. рис. 1.3 - 3), электрический гради-ент препятствует выходу К + из клетки, что снижает его проводи-мость, хотя он продолжает выходить.

Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Вся нисходящая часть пика ПД обусловлена выходом К + из клетки. Нередко в конце ПД наблюда-ется замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К + и замедлением выхо-да его из клетки из-за частичного закрытия ворот К-каналов. Вто-рая причина замедления тока К + из клетки связана с возрастани-ем положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

Таким образом, главную роль в возникновении ПД играет Ыа + , входящий в клетку при повышении проницаемости клеточ-ной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Ма + в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возника-ет. Однако проницаемость мембраны для К + тоже играет важную роль. Если повышение проницаемости для К + предотвратить тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправ-ляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

Роль Са 2+ в возникновении ПД в нервных и мышечных клет-ках скелетной мускулатуры незначительна. Однако Са 2+ играет важную роль в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного во-локна к мышечному, в обеспечении мышечного сокращения.

4. Следовая гиперполяризация клеточной мембраны (рис. 1.3 -4) обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К + , она характерна для нейронов. Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны.

Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Ыа/К-помпа непосредственно за фазы потенциала действия не отвечает, хотя она и про-должает работать во время развития ПД.

Следовая деполяризация также характерна для нейронов, она может быть зарегистрирована и в клетках скелетной мышцы. Ме-ханизм ее изучен недостаточно. Возможно, это связано с кратко-временным повышением проницаемости клеточной мембраны для Ыа + и входом его в клетку согласно концентрационному и электри-ческому градиентам.

В. Запас ионов в клетке, обеспечивающих возникновение возбуждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяют-ся. Клетка может возбуждаться до 510 5 раз без подзарядки, то есть без работы Ыа/К-насоса.

Число импульсов, которое гене-рирует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем больше запас ионов и больше импульсов оно может генерировать (от не-скольких сот до нескольких сотен тысяч) без участия №/К-насоса. Однако в тонких С-волокнах на возникновение одного ПД рас-ходуется около 1 % концентрационных градиентов № + и К + .

Таким образом, если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться и в этом случае. В реальной же действительности Ыа/К-насос постоянно переносит Ыа + из клет-ки, а К + возвращает в клетку, в результате постоянно поддержи-вается концентрационный градиент № + и К + , что осуществляет-ся за счет непосредственного расхода энергии, источником которой является АТФ.

  • Лекция 3. Механизмы проведения возбуждения
  • 3.2. Нервно-мышечный синапс: строение, механизм проведения возбуждения, особенности проведения возбуждения в синапсе по сравнению с нервным волокном.
  • Лекция 4. Физиология мышечного сокращения
  • Лекция 5. Общая физиология центральной нервной системы
  • 5.3. Классификация синапсов цнс, медиаторы синапсов цнс и их функциональное значение. Свойства синапсов цнс.
  • Лекция 6. Структура цнс. Свойства нервных центров.
  • 6. 1. Понятие о нервном центре. Свойства нервных центров.
  • 6.2. Методы исследования функций цнс.
  • Лекция 7. Механизмы и способы торможения в цнс. Координационная деятельность цнс.
  • 7.1. Процессы торможения в цнс: механизм постсинаптического и пресинаптического торможений, посттетаническое и пессимальное торможение. Значение торможения.
  • 7.2. Координационная деятельность цнс: понятие о координации, принципы координационной деятельности цнс.
  • Лекция 8. Физиология спинного мозга и мозгового ствола.
  • 8.1. Роль спинного мозга в регуляции функций организма: вегетативные и соматические центры и их значение.
  • 8.2. Продолговатый мозг и мост: центры и соответствующие им рефлексы, их отличия от рефлексов спинного мозга.
  • 8.3 Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы.
  • Лекция 9. Физиология ретикулярной формации, промежуточного и заднего мозга.
  • 9.2. Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
  • 9.3. Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.
  • Лекция 10. Физиология переднего мозга. Физиология вегетативной нервной системы.
  • 10.1. Мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.
  • 10.2. Лимбическая система: структуры и функции.
  • 10.3. Функции новой коры, функциональное значение соматосенсорных и моторных зон коры больших полушарий.
  • Лекция 11. Физиология эндокринной системы и нейроэндокринные отношения.
  • 11. 1. Эндокринная система и гормоны. Функциональное значение гормонов.
  • 11.2. Общие принципы регуляции функций эндокринных желез. Гипоталамо-гипофизарная система. Функции аденогипофиза. Функции нейрогипофиза
  • 11.4. Щитовидная железа: регуляция образования и транспорт иодированных гормонов, роль иодированных гормонов и кальцитонина. Функции паращитовидных желез.
  • Лекция 12. Физиология системы крови. Физико-химические свойства крови.
  • 12. 1. Кровь как составная часть внутренней среды организма. Понятие о системе крови (г.Ф. Ланг). Функции крови. Количество крови в организме и методы его определения.
  • 12. 2. Состав крови. Гематокрит. Состав плазмы. Основные физико-химические константы крови.
  • Лекция 13. Физиология гемостаза.
  • 13.1. Свертывание крови: понятие, ферментативная теория (Шмидт, Моравиц), факторы свертывания, роль тромбоцитов.
  • Лекция 14. Антигенные свойства крови. Основы трансфузиологии
  • 14.2. Группы крови систем Rh: открытие, антигенный состав, значение для клиники. Краткая характеристика других систем антигенов (m, n, s, p и др.)
  • Лекция 15. Клеточные элементы крови
  • 15.2. Гемоглобин: свойства, соединения гемоглобина, количество Нв, методы его определения. Цветовой показатель. Метаболизм гемоглобина.
  • 15.3. Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.
  • 15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
  • Лекция 16. Физиология сердечной деятельности
  • Лекция 17. Внешние проявления работы сердца, способы их регистрации. Функциональные показатели деятельности ердца.
  • Лекция 18. Регуляция работы сердца.
  • 18.2. Интракардиальная регуляция деятельности сердца: миогенная регуляция, внутрисердечная нервная система.
  • 18.3. Рефлекторные механизмы регуляции сердечной деятельности. Корковые влияния. Гуморальные механизмы регуляции работы сердца.
  • Лекция 19. Законы движения крови по сосудам. Основные гемодинамические показатели
  • Лекция 20. Особенности движения крови в разных отделах сосудистого русла.
  • 20.3. Давление крови в артериях: виды, показатели, факторы, их определяющие, кривая артериального давления.
  • 21.1. Нервная регуляция сосудистого тонуса.
  • 21.2. Базальный тонус и его компоненты, доля участия его в общем тонусе сосудов. Гуморальная регуляция сосудистого тонуса. Ренин-антиотезиновая система. Локальные регуляторные механизмы
  • 21. 4. Особенности регионального кровообращения: коронарного, легочного, мозгового, печеночного, почечного, кожного.
  • 22.1. Дыхание: этапы дыхательного процесса. Понятие о внешнем дыхании. Функциональное значение легкого, воздухоносных путей и грудной клетки в процессе дыхания. Негазообменные функции легких.
  • 22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. Понятие об отрицательном давлении, его величина, происхождение, значение.
  • 22. 3. Вентиляция легких: легочные объемы и емкости
  • Лекция 23. Механизмы газообмена
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.
  • Лекция 24. Регуляция дыхания
  • 24. 1. Структурно-функциональная характеристика дыхательного центра. Роль гуморальных факторов в регуляциИ интенсивности дыхания. Рефлекторная саморегуляция вдоха и выдоха.
  • 24. 2 Особенности дыхания и его регуляция при мышечной работе, при пониженном и повышенном атмосферном давлении. Гипоксия и ее виды. Искусственное дыхание. Гипербарическая оксигенация.
  • 24.3. Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.
  • Лекция 25. Общая характеристика пищеварительной системы. Пищеварение в полости рта.
  • Лекция 26. Пищеварение в желудке и 12-п. Кишке.
  • 26.3. Печень: ее роль в пищеварении (состав желчи, ее значение, регуляция желчеобразования и желчевыделения), не пищеварительные функции печени.
  • Лекция 27. Пищеварение в тонкой и толстой кишке. Всасывание. Голод и насыщение.
  • 27. 1. Пищеварение в тонкой кишке: количество, состав пищеварительного сока тонкой кишки, регуляция ее секреции, полостное и мембранное пищеварение. Виды сокращений тонкой кишки и их регуляция.
  • 27.3. Всасывание в желудочно-кишечном тракте: интенсивность всасывания в различных отделах, механизмы всасывания и опыты, их доказывающие; регуляция всасывания.
  • 27.4. Физиологические основы голода и насыщения. Периодическая деятельность желудочно-кишечного тракта. Механизмы активного выбора пищи и биологическое значение этого факта.
  • Лекция 28. Метаболические основы физиологических функций.
  • 28. 1. Значение Обмена веществ. Обмен белков, жиров и углеводов. Витамины и их роль в организме.
  • 28. 2. Особенности и регуляция водно-солевого обмена.
  • 28. 4. Принципы исследования прихода и расхода энергии организмом.
  • 28.5. Питание: физиологические нормы питания, основные требования к составлению пищевого рациона и режиму приема пищи,
  • Лекция 29. Терморегуляция
  • 29. 1. Терморегуляция и ее виды, физические и физиологические механизмы теплопродукции и теплоотдачи.
  • 29. 2. Механизмы Терморегуляции. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Понятие о гипотермии и гипертермии.
  • Лекция 31. Гомеостатические функции почек.
  • Лекция 32. Сенсорные системы. Физиология анализаторов
  • 32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.
  • 32.2. Анализаторы (и.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.
  • 32. 3. Кодирование информации в анализаторах.
  • Лекция 33. Физиологические особенности отдельных анализаторных систем.
  • 33. 1. Зрительный анализатор
  • 33. 2. Слуховой анализатор. Механизм восприятия звука.
  • 33. 3. Вестибулярный анализатор.
  • 33.4. Кожно-кинестетический анализатор.
  • 33.5. Обонятельный и вкусовой анализаторы.
  • 33. 6. Внутренний (висцеральный) анализатор.
  • Лекция 34. Физиология высшей нервной деятельности.
  • 34. 1. Понятие о высшей нервной деятельности. Классификация условных рефлексов и их характеристика. Методы изучения внд.
  • 34. 2. Механизм образования условных рефлексов. “Замыкание” временной связи (и.П. Павлов, э.А. Асратян, п.К. Анохин).
  • 34. 4. Аналитико-синтетическая деятельность коры больших полушарий.
  • 34.5. Индивидуальные особенности высшей нервной деятельности. Типы внд.
  • Лекция 35. Особености внд человека. Физиологические механизмы сна.
  • 35.1. Особенности внд человека. Понятие о первой и второй сигнальной системах человека.
  • 35. 2. Физиологические МеХанизмы сна.
  • Лекция 36. Физиологические механизмы памяти.
  • 36.1. Физиологические механизмы усвоения и сохранения информации. Виды и механизмы памяти.
  • Лекция 37. Эмоции и мотивации. Физиологические механизмы целенаправленного поведения
  • 37.1. Эмоции: причины возникновения, значение. Информационная теория эмоций п.С. Симонова и теория эмоциональных состояний г.И. Косицкого.
  • 37.2. Функциональная система целенаправленного поведения (п.К. Анохин), ее центральные механизмы. Мотивации и их виды.
  • Лекция 38. Защитные функции организма. Ноцицептивная система.
  • 38.1. Ноцицепция: биологическое значение боли, ноцицептивная и антиноцицептивная системы.
  • Лекция 39. Физиологические механизмы трудовой деятельности и приспособления организма к изменившимся условиям.
  • 39.1. Физиологические основы трудовой деятельности. Особенности физического и умственного труда. Особенности труда в условиях современного производства, утомление и активный отдых.
  • 39. 2. Aдаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к климатическим факторам обитания.
  • 39.3. Биологические ритмы и их значение в деятельности человека и его адаптации к экстремальным условиям.
  • 39. 4. Стресс. Механизм развития общего адаптационного синдрома.
  • Лекция 40. Физиология репродукции. Плодо-материнские отношения и функциональная система мать-плод (фсмп).
  • 2.2. Потенциал действия: фазы потенциала действия, механизм возникновения. Восстановительный период. Явление аккомодации возбудимой ткани.

    Потенциал действия . Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

    Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К + превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na + . Поэтому мембрана в покое снаружи заряжена положительно.

    При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К + . Поэтому поток ионов Na + в клетку начинает значительно превышать направленный наружу поток К + . Ток Na + достигает величины +150 мв. Одновременно несколько уменьшается выход К + из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

    При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электроотрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

    Потенциал действия протекает фазно. Временной ход потенциала действия включает четыре последовательных этапа: локальный ответ, деполяризацию, реполяризацию и следовые потенциалы (рис. 2). В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

    Рис. 2. Фазы и временной ход потенциала действия.

    Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию (следовой отрица-тельный потенциал) и следовую гиперполяризацию (следовой положи-тельный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

    Промежуток времени, в течение которого сохраняется активное состояние в виде ПД, неодинаков в разных возбудимых структурах. В нейронах он составляет около 1 мс, в волокнах скелетных мышц – 10 мс, в миокарде достигает 200–250 мс.

    Левое крыло графической записи ПД, отражающее изменение потенциала в электроположительную сторону называется деполяризацией. Область электроположительности носит название овершута, правое крыло ПД, свидетельствующее о восстановлении исходного поляризованного состояния мембраны принято называть реполяризацией. Часто, но не всегда возвращение ПД к исходному уровню в состоянии покоя происходит с наличием фаз в форме так называемых следовых потенциалов. Следовые потенциалы неодинаковы в мышцах и нервах. В волокнах скелетных мышц фаза реполяризации очень замедлена. Примерно через 1 мс после начала ПД наблюдается отчетливый перегиб крыла реполяризации – это следовая деполяризация. В нейроне чаще всего кривая реполяризации быстро пересекает уровень МПП и на некоторое время потенциал мембраны становится более электроотрицательным, чем МП. Это явление называют следовой гиперполяризацией.

    Повышение проницаемости мембраны для ионов Na + продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na + -каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

    Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са ++ , в других - для Mg + . Исследования механизмов изменения проницаемости мембран продолжаются.

    В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса. В результате повышения проводимости резко возрастает поток катионов Na + , поэтому отрицательный заряд в клетке вблизи внутренней стороны поверхности мембраны также резко уменьшается вплоть до преобладания положительных зарядов. В результате происходит изменение знака потенциала, достигающего +30 мВ. После этого проводимость мембраны дляNa + также резко снижается.

    Для нормального протекания ПД играет существенную роль и изменение проводимости мембраны для K + , которая начинает возрастать позже возрастания проводимости дляNa + . Увеличение относительно медленного выходаK + из клетки в фазу снижения проводимости дляNa + вызывает реполяризацию мембраны.

    Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

    Условия возникновения возбуждения . Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

    Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

    Инактивация Na+-системы. Na+-системой обозначают механизм, позволяющий в течение нескольких долей миллисекунды многократно (до 20 раз) увеличить проводимость клеточной мембраны для Na+. Достигнув пикового значения, примерно через 0,5 мс проводимость мембраны для Na+ начинает снижаться. Быстрое снижение проводимости для Na+ называют инактивацией Na+-системы. В основе инактивации Na+-системы лежит переход в инактивационное состояние потенциалзависимых Na+-каналов. Поэтому скорость и степень снижения проводимости потенциалзависимы. Это означает, что чем больше отличается потенциал мембраны от мембранного потенциала покоя в сторону электроположительности, тем сильнее инактивирована Na+-система. Поэтому деполяризация мембраны вызывает снижение тока Na+ внутрь клетки. С одной стороны, это свидетельствует о том, что усиление тока Na+ само себе служит причиной его быстрого последующего снижения и начала развития реполяризации. С другой стороны, это означает, что если исходный потенциал клетки выше потенциала покоя на 20–30 мВ, то Na+-система полностью инактивирована и никакая последующая деполяризация уже не может активировать ее, т.е. вызвать резкое увеличение проводимости для Na+ и генерацию ПД.

    В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания.

    На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление.

    Стадия покоя . Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ.

    Фаза деполяризации . В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его.

    Фаза реполяризации . В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны.

    Временной ход потенциала действия в нейроне ; показаны последовательные фазы потенциала действия, описанные в тексте.

    Для более полного понимания факторов , являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов.

    Электроупавляемые натриевые и калиевые каналы . Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na + /K + -насосу и каналам К + /Na + -утечки.

    Электроуправляемый натриевый канал . В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна.

    Активация натриевого канала . Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз.

    Инактивация натриевого канала . В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации.

    Существует другая важная характеристикая процесса инактивации натриевого канала : инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.


    Потенциал действия клетки рабочего миокарда .
    Быстрое развитие деполяризации и продолжительная реполяризация. Замедленная реполяризация (плато) переходит в быструю реполяризацию.

    Вернуться в оглавление раздела "