Мода сегодня

Магнитное поле прямого тока магнитные линии кратко. Силовые линии магнитного поля. Магнитное поле проводника с током. Магнитный момент кругового тока

Магнитное поле прямого тока магнитные линии кратко. Силовые линии магнитного поля. Магнитное поле проводника с током. Магнитный момент кругового тока

Магнитные линии. Магнитные линии – это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок. Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии. Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля. Магнитные линии магнитного поля представляют собой замкнутые кривые, охватывающие проводник. Для определения направления магнитных линий используют правило буравчика. Буравчик.

Слайд 10 из презентации ««Магнитное поле» 8 класс» . Размер архива с презентацией 978 КБ.

Физика 8 класс

краткое содержание других презентаций

«Состояние невесомости» - «Большая Советская Энциклопедия». Суть явления невесомости. Невесомость имеет место при свободном движении тела в поле тяготения. Вывод. Современное значение слова. Космонавт не ощущает собственную тяжесть. Цель работы. Свободное падение. Объяснение невесомости. В словаре В.И. Даля. В невесомости изменяется ряд жизненных функций живого организма. Искусственная «тяжесть». Невесомость. Невесомость на Земле.

«Виды тепловых двигателей» - Рабочее тело. С 1775 по 1785 г – фирмой Уатта построено 56 паровых машин. Потребляет часть полученного количества теплоты Q2. Нагреватель. Двигатель внутреннего сгорания (ДВС). Двигаемся на отдых! История создания тепловых двигателей. Через 5 лет Тревитик построил новый паровоз. Пар, расширяясь, с силой и грохотом выбрасывал ядро. Тепловые двигатели. Холодильник. Вода мгновенно испарялась и превращалась в пар.

«Влияние атмосферного давления» - Давление атмосферного воздуха. Кому легче ходить по грязи. Наличие атмосферного давления привело людей в замешательство. Как мы дышим. Выводы. Как используется атмосферное давление. Как пьёт слон. Человек не может легко ходить по болоту. Цель проекта. Мухи и древесные лягушки могут держаться на оконном стекле. Как мы пьем.

«Викторина по физике с ответами» - Геофизика. Возраст Земли. Как сейсмограф измеряет землетрясения. Компас. Какой энергией обладает химическое топливо. Магнитная стрелка. Ответы к геофизической викторине. Плохая проводимость воздуха. Луна и Солнце. Геофизика – совокупность наук, изучающих физические свойства Земли. Что мы знаем о компасе. Каков возраст Земли. Тепловые и магнитные явления в природе. Почему у ветров разные имена.

Источник тока. Электрический ток в проводнике. Проведение эксперимента. Необходимость наличия источника тока. Источники тока. Состав гальванического элемента. Герметичные малогабаритные аккумуляторы. Современный мир. Первая электрическая батарея. Принцип работы источника тока. Работа по разделению. Из нескольких гальванических элементов можно составить батарею. Вольтов столб. Домашний проект. Классификация источников тока.

««Оптические приборы» физика» - Содержание. Проекционный аппарат. Разновидности телескопов. Микроскоп. Строение электронного микроскопа. Электронный микроскоп. Создание микроскопа. Строение телескопа. Телескоп. Рефракторы. Использование микроскопа. Использование телескопов. Фотоаппарат. История фотографирования. Оптические приборы: телескоп, микроскоп, фотоаппарат. Рефлекторы.

Существование магнитного поля вокруг проводника с электрическим током можно обнаружить различными способами. Один из таких способов заключается в использовании мелких железных опилок.

В магнитном поле опилки - маленькие кусочки железа - намагничиваются и становятся магнитными стрелочками. Ось каждой стрелочки в магнитном поле устанавливается вдоль направления действия сил магнитного поля.

На рисунке 94 изображена картина магнитного поля прямого проводника с током. Для получения такой картины прямой проводник пропускают сквозь лист картона. На картон насыпают тонкий слой железных опилок, включают ток и опилки слегка встряхивают. Под действием магнитного поля тока железные опилки рас полагаются вокруг проводника не беспорядочно, а по концентрическим окружностям.

Рис. 94. Картина магнитного поля проводника с током

    Линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называют магнитными линиями магнитного поля.

Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.

Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля.

Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник.

С помощью магнитных линий удобно изображать магнитные поля графически. Так как магнитное поле существует во всех точках пространства, окружающего проводник с током, то через любую точку можно провести магнитную линию.

Рис. 95. Расположение магнитных стрелок вокруг проводника с током

На рисунке 95, а показано расположение магнитных стрелок вокруг проводника с током. (Проводник расположен перпендикулярно плоскости чертежа, ток в нём направлен от нас, что условно обозначено кружком с крестиком.) Оси этих стрелок устанавливаются вдоль магнитных линий магнитного поля прямого тока. При изменении направления тока в проводнике все магнитные стрелки поворачиваются на 180° (рис. 95, б; в этом случае ток в проводнике направлен к нам, что условно обозначено кружком с точкой). Из этого опыта можно заключить, что направление магнитных линий магнитного поля тока связано с направлением тока в проводнике .

Вопросы

  1. Почему для изучения магнитного поля можно использовать железные опилки?
  2. Как располагаются железные опилки в магнитном поле прямого тока?
  3. Что называют магнитной линией магнитного поля?
  4. Для чего вводят понятие магнитной линии поля?
  5. Как на опыте показать, что направление магнитных линий связано с направлением тока?

Упражнение 40

Магни́тное по́ле - силовое поле , действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля .

Силовые линии магнитного поля – это воображаемые линии, касательные к которым в каждой точке поля совпадают по направлению с вектором магнитной индукции.

Для магнитного поля справедлив принцип суперпозиции: в каждой точке пространства вектор магнитной индукции B B∑→ созданных в этой точке всеми источниками магнитных полей равен векторной сумме векторов магнитных индукций Bk Bk→ , созданных в этой точке всеми источниками магнитных полей:

28.Закон Био-Савара-Лапласа. Закон полного тока.

Формулировка закона Био Савара Лапласа имеет вид: При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

где I ток в контуре

гамма контур, по которому идет интегрирование

r0 произвольная точка

Закон полного тока это закон, связывающий циркуляцию вектора напряженности магнитного поля и ток.

Циркуляция вектора напряженности магнитного поля по контуру равна алгебраической сумме токов, охватываемых этим контуром.

29.Магнитное поле проводника с током. Магнитный момент кругового тока.

30. Действие магнитного поля на проводник с током. Закон Ампера. Взаимодействие токов .

F = B I l sinα ,

где α - угол между векторами магнитной индукции и тока, B - индукция магнитного поля, I - сила тока в проводнике, l - длина проводника.

Взаимодействие токов. Если в цепь постоянного тока включить два провода, то: Последовательно включенные параллельные близко расположенные проводники отталкиваются. Параллельно включенные проводники притягиваются.

31. Действие электрических и магнитных полей на движущийся заряд. Сила Лоренца.

Сила Лоренца - сила , с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля , нередко же полную силу - со стороны электромагнитного поля вообще , иначе говоря, со стороны электрического и магнитного полей.

32. Действие магнитного поля на вещество. Диа-, пара- и ферромагнетики. Магнитный гистерезис.

B = B 0 + B 1

где B B→ - магнитная индукция поля в веществе; B 0 B→0 - магнитная индукция поля в вакууме, B 1 B→1 - магнитная индукция поля, возникшего благодаря намагничиванию вещества.

Вещества, для которых магнитная проницаемость незначительно меньше единицы (μ < 1), называются диамагнетиками , незначительно больше единицы (μ > 1) - парамагнетиками .

ферромагнетик - вещество или материал, в котором наблюдается явление ферромагнетизма , т. е. появление спонтанной намагниченности при температуре ниже температуры Кюри.

Магнитный гистерезис - явление зависимости вектора намагничивания и вектора напряженностимагнитного поля в веществе не только от приложенного внешнего поля , но и от предыстории данного образца

Магнитное поле – это особая форма материи, которая создается магнитами, проводниками с током (движущимися заряженными частицами) и которую можно обнаружить по взаимодействию магнитов, проводников с током (движущихся заряженных частиц).

Опыт Эрстеда

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда.

Магнитная стрелка, расположенная вблизи проводника, поворачивается на некоторый угол при включении тока в проводнике. При размыкании цепи стрелка возвращается в исходное положение.

Из опыта Г. Эрстеда следует, что вокруг этого проводника существует магнитное поле.

Опыт Ампера
Два параллельных проводника, по которым протекает электрический ток, взаимодействуют между собой: притягиваются, если токи сонаправлены, и отталкиваются, если токи направлены противоположно. Это происходит из-за взаимодействия возникающих вокруг проводников магнитных полей.

Свойства магнитного поля

1. Материально, т.е. существует независимо от нас и наших знаний о нём.

2. Создаётся магнитами, проводниками с током (движущимися заряженными частицами)

3. Обнаруживается по взаимодействию магнитов, проводников с током (движущихся заряженных частиц)

4. Действует на магниты, проводники с током (движущиеся заряженные частицы) с некоторой силой

5. Никаких магнитных зарядов в природе не существует. Нельзя разделить северный и южный полюсы и получить тело с одним полюсом.

6. Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Ампер выдвинул заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Эти токи представляют собой движение электронов по орбитам в атоме.

Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает.

И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.


7. Магнитные силы действуют в магнитном поле по определенным направлениям, которые называют магнитными силовыми линиями. С их помощью можно удобно и наглядно показывать магнитное поле в том или ином случае.

Чтобы более точно изобразить магнитное поле, условились в тех местах, где поле сильнее, показывать силовые линии расположенными гуще, т.е. ближе друг к другу. И наоборот, в местах, где поле слабее, показывают силовые линии в меньшем количестве, т.е. расположенными реже.

8. Магнитное поле характеризует вектор магнитной индукции.

Вектор магнитной индукции - векторная величина, характеризующая магнитное поле.

Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

Направление вектора индукции поля и силы тока I связаны «правилом правого винта (буравчика)»:

если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки в данной точке совпадет с направлением вектора магнитной индукции в этой точке.

Магнитное поле, что это? - особый вид материи;
Где существует? - вокруг движущихся электрических зарядов (в том числе вокруг проводника с током)
Как обнаружить? - с помощью магнитной стрелки (или железных опилок) или по его действию на проводник с током.


Опыт Эрстеда:

Магнитная стрелка поворачивается, если по проводнику начинает протекать эл. ток, т.к. вокруг проводника с током образуется магнитное поле.


Взаимодействие двух проводников с током:

Каждый проводник с током имеет вокруг себя собственное магнитное поле, которое с некоторой силой действует на соседний проводник.

В зависимости от направления токов проводники могут притягиваться или отталкиваться друг от друга.

Вспомни прошлый учебный год:


МАГНИТНЫЕ ЛИНИИ (или иначе линии магнитной индукции)

Как изобразить магнитное поле? - с помощью магнитных линий;
Магнитные линии, что это?

Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты.

Вспомни прошлый учебный год:


НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика неоднородного магнитного поля: магнитные линии искривлены;густота магнитных линий различна;сила, с которой магнитное поле действует на магнитную стрелку, ична в разных точках этого поля по величине и направлению.

Где существует неоднородное магнитное поле?

Вокруг прямого проводника с током;

Вокруг полосового магнита;

Вокруг соленоида (катушки с током).

ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика однородного магнитного поля: магнитные линии параллельные прямые;густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, динакова во всех точках этого поля по величине направлению.

Где существует однородное магнитное поле?
- внутри полосового магнита и внутри соленоида, если его длина много больше, чем диаметр.



ИНТЕРЕСНО

Способность железа и его сплавов сильно намагничиваться исчезает при нагревании до высокой температуры. Чистое железо теряет такую способность при нагревании до 767 °С.

Мощные магниты, используемые во многих современных товарах, способны влиять на работу электронных стимуляторов сердца и вживленных сердечных устройств у кардиологических пациентов. Обычные железные или ферритовые магниты, которые легко отличить по тускло-серой окраске, обладают небольшой силой и практически не вызывают беспокойств.
Однако недавно появились очень сильные магниты - блестяще-серебристые по цвету и представляющие собой сплав неодима, железа и бора. Создаваемое ими магнитное поле очень сильно, благодаря чему они широко применяются в компьютерных дисках, наушниках и динамиках, а также в игрушках, украшениях и даже одежде.

Однажды на рейде главного города Майорки, появилось французское военное судно "Ля-Ролейн". Состояние его было настолько жалким, что корабль едва дошел своим ходом до причала.. Когда на борт судна взошли французские ученые, в том числе двадцати двухлетний Араго, выяснилось, что корабль был разрушен молнией. Пока комиссия осматривала судно, покачивая головами при виде обгоревших мачт и надстроек, Араго поспешил к компасам и увидел то, что ожидал: стрелки компасов указывали в разные стороны...

Через год, копаясь в останках разбившегося вблизи Алжира генуэзского судна, Араго обнаружил, что стрелки компасов ыли размагничены В кромешной тьме туманной ночи капитан, направив по компасу судно к северу, подальше опасных мест, на самом деле неудержимо гался к тому, чего так старался избежать. Корабль шел к югу, о к скалам, обманутый пораженным молнией магнитным компасом.

В. Карцев. Магнит за три тысячелетия.

Магнитный компас был изобретен в Китае.
Уже 4000 лет тому назад караванщики брали с собой глиняный горшок и "берегли его в пути пуще всех своих дорогих грузов". В нем на поверхности жидкости на деревянном поплавке лежал камень, любящий железо. Он мог поворачиваться и, все время указывал путникам в сторону юга, что при отсутствии Солнца помогало им выходить к колодцам.
В начале нашей эры китайцы научились изготавливать искусственные магниты, намагничивая железную иглу.
И только через тысячу лет намагниченную иглу для компаса стали применять европейцы.


МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Земля - это большой постоянный магнит.
Южный магнитный полюс, хоть и расположен, по земным меркам, вблизи Северного географического полюса, их, тем не менее, разделяют около 2000 км.
На поверхности Земли имеются территории, где ее собственное магнитное поле сильно искажено магнитным полем железных руд, залегающих на небольшой глубине. Одна из таких территорий – Курская магнитная аномалия, расположенная в Курской области.

Магнитная индукция магнитного поля Земли составляет всего около 0,0004Теслы.
___

На магнитное поле Земли оказывает влияние повышенная солнечная активность. Примерно один раз в каждые 11.5 лет она возрастает настолько, что нарушается радиосвязь, ухудшается самочувствие людей и животных, а стрелки компасов начинают непредсказуемо "плясать" из стороны в сторону. В таком случае говорят, что наступает магнитная буря. Обычно она длится от нескольких часов до нескольких суток.

Магнитное поле Земли время от времени изменяет свою ориентацию, совершая и вековые колебания (длительностью 5–10 тыс. лет), и полностью переориентируясь, т.е. меняя местами магнитные полюсы (2–3 раза за миллион лет). На это указывают «вмороженное» в осадочные и вулканические породы магнитное поле отдаленных эпох. Поведение геомагнитного поля нельзя назвать хаотичным, оно подчиняется своеобразному «расписанию».

Направление и величина геомагнитного поля задаются процессами, происходящими в ядре Земли. Характерное время переполюсовки, определяемое внутренним твердым ядром, составляет от 3 до 5 тыс. лет, а определяемое внешним жидким ядром – около 500 лет. Этими временами и может обьясняться наблюдаемая динамика геомагнитного поля. Компьютерное моделирование с учетом различных внутриземных процессов ьпоказало возможность переполюсовки магнитного поля примерно за 5 тыс. лет.

ФОКУСЫ С МАГНИТАМИ

"Храм очарований, или механический, оптический и физический кабинет г. Гамулецкого де Колла" известного русского иллюзиониста Гамулецкого, просуществовавший до 1842 года, прославился помимо всего прочего тем, что посетители, поднимавшиеся по украшенной канделябрами и устланной коврами лестнице, еще издали могли заметить на верхней площадке лестницы золоченую фигуру ангела, выполненную в натуральный человеческий рост, которая парила в горизонтальном положении над дверью кабинета не будучи подвешена, ни оперта. В том, что фигура не имела никаких подпорок, мог убедиться каждый желающий. Когда посетители вступали на площадку, ангел поднимал руку, подносил ко рту валторну и играл на ней, шевеля пальцами самым естественным образом. Десять лет - говорил Гамулецкий, - я трудился, чтобы найти точку и вес магнита и железа, дабы удержать ангела в воздухе. Помимо трудов немало и средств употребил я на это чудо".

В средние века весьма распространенным иллюзионным номером были так называемые "послушные рыбы", изготовлявшиеся из дерева. Они плавали в бассейне и повиновались малейшему мановению руки фокусника, который заставлял их двигаться во всевозможных направлениях. Секрет фокуса был чрезвычайно прост: в рукаве у фокусника был спрятан магнит, а в головы рыб вставлены кусочки железа.
Более близкими к нам по времени были манипуляции англичанина Джонаса. Его коронный номер: Джонас предлагал некоторым зрителям положить часы на стол, после чего он, не прикасаясь к часам, произвольно менял положение стрелок.
Современным воплощением такой идеи является хорошо известные электрикам электромагнитные муфты, с помощью которых можно вращать устройства, отделенные от двигателя какой-нибудь преградой, например, стеной.

В середине 80-х годов 19 века пронеслась молва об ученом слоне, который умел не только складывать и вычитать, но даже умножать, делить и извлекать корни. Делалось это следующим образом. Дрессировщик, например, спрашивал слона: "Сколько будет семью восемь?" Перед слоном стояла доска с цифрами. После вопроса слон брал указку и уверенно показывал цифру 56. Точно так же производилось деление и извлечение квадратного корня. Фокус был достаточно прост: под каждой цифрой на доске был спрятан небольшой электромагнит. Когда слону задавался вопрос, в обмотку магнита, расположенного означающей правильный ответ, подавался ток. Железная указка в хоботе слона сама притягивалась к правильной цифре. Ответ получался автоматически. Несмотря на всю простоту этой дрессировки, секрет фокуса долгое время не могли разгадать, и "ученый слон" пользовался громадным успехом.