Разные разности

Все про органические вещества!! Предмет органической химии. Органические вещества — Гипермаркет знаний

Все про органические вещества!! Предмет органической химии. Органические вещества — Гипермаркет знаний

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Название класса соединений Общая формула
Алканы С n H 2 n +2
Алкены, циклоалканы С n H 2 n
Алкины, алкадиены, циклоалкены С n H 2 n -2
Одноатомные спирты, простые эфиры С n H 2n+1 OH
Двухатомные спирты С n H 2n (OH) 2
Трехатомные спирты С n H 2n-1 (OH) 3
Альдегиды (предельные), кетоны С n H 2n+1 CHO
Одноосновные карбоновые кислоты, сложные эфиры С n H 2n+1 COOH
Двухосновные карбоновые кислоты С n H 2n (COOH) 2
Амины С n H 2n+1 NH 2
Нитросоединения С n H 2n+1 NO 2
Аминокислоты С n H 2n NH 2 COOH
Ароматические углеводороды, гомологи бензола С n H 2n-6
Ароматические одноатомные спирты С n H 2n-7 OH
Ароматические двухатомные спирты С n H 2n-8 (OH) 2
Ароматические альдегиды С n H 2n-7 CHO
Ароматические одноосновные кислоты С n H 2n-7 COOH

Алгоритм составления формул изомеров алканов

1. Определите число атомов углерода по корню названия углеводорода.

2. Изобразите схему нормальной углеродной цепи и пронумеруйте в ней атомы углерода.

3. Изобразите схему пронумерованной углеродной цепи изомеров, которых по сравнению с нормальной цепью на один атом углерода меньше, этот атом углерода присоедините во всевозможных положениях к атомам углерода пронумерованной главной цепи, кроме крайних.

4. Составьте схему пронумерованной углеродной цепи изомеров, в которых по сравнению с нормальной цепью на два атома углерода меньше; эти два атома углерода присоедините всевозможных положениях к атомам углерода пронумерованной главной цепи, кроме крайних.

5. Впишите атомы водорода с учетом недостающих единиц валентности у атомов углерода в схемах углеродной цепи (валентность углерода – IV).

6. Количество атомов углерода и водорода в углеродной цепи изомеров не должно меняться.

Алгоритм составления формул углеводородов по их названию

1. Определите число атомов углерода в молекуле по корню названия углеводорода.

2. Изобразите углеродную цепь в соответствии с числом атомов углерода в молекуле.

3. Пронумеруйте углеродную цепь.

4. Установите наличие соответствующей углеродной связи в молекуле по суффиксу названия углеводорода, изобразите эту связь в углеродной цепи.

5. Подставьте радикалы в соответствии с номерами атомов углерода в цепи.

6. Обозначьте черточками недостающие валентности у атомов углерода.

7. Впишите недостающие атомы водорода.

8. Представьте структурную формулу в сокращенной записи.

Названия некоторых органических веществ

Химическая формула Систематическое название вещества Тривиальное название вещества
СH 2 Cl 2 Дихлорметан Хлористый метилен
CHCl 3 Трихлорметан Хлороформ
CCl 4 Тетрахлорметан Четыреххлористый углерод
C 2 H 2 Этин Ацетилен
C 6 H 4 (CH 3) 2 Диметилбензол Ксилол
C 6 H 5 CH 3 Метилбензол Толуол
C 6 H 5 NH 2 Аминобензол Анилин
C 6 H 5 OH Гидроксибензол Фенол, карболовая кислота
C 6 H 2 CH 3 (NO 2) 3 2,4,6-тринитротолуол Тол, тротил
С 6 Н 3 (ОН) 3 1,2,3 - тригидроксибензол Пирогаллол
С 6 Н 4 (ОН) 2 1,3 - дигидроксибензол Резорцин
С 6 Н 4 (ОН) 2 1,2- дигидроксибензол Пирокатехин
С 6 Н 4 (ОН) 2 1,4 - дигидроксибензол Гидрохинон
C 6 H 2 OH(NO 2) 3 2,4,6- тринитрофенол Пикриновая кислота
C 3 H 5 (OH) 3 Пропантриол -1,2,3 Глицерин
C 2 H 4 (OH) 2 Этандиол – 1,2 Этиленгликоль
C 6 H 5 CH 2 OH Фенилметанол Бензиловый спирт
С 6 H 8 (OH) 6 Гексангексаол-1,2,3,4,5,6 Сорбит
C 3 H 6 O Прапанон Ацетон
CH 3 OH Метанол (метиловый спирт) Древесный спирт
СН 2 О Метаналь Формальдегид
С 2 Н 4 О Этаналь Уксусный альдегид, ацетальальдегид
С 3 Н 6 О Пропаналь Пропионовый альдегид
С 3 Н 4 О Пропеналь Акролеин
С 6 Н 5 СОН Бензальдегид Бензойный альдегид
С 4 Н 8 О Бутаналь Масляный альдегид
С 5 Н 10 О Пентаналь Валериановый альдегид
НСООН Метановая кислота Муравьиная кислота(соль - формиат)
СН 3 СООН Этановая кислота Уксусная кислота(соль – ацетат)
С 2 Н 5 СООН Пропановая кислота Пропионовая кислота
С 3 Н 7 СООН Бутановая кислота Масляная кислота
С 4 Н 9 СООН Пентановая кислота Валериановая кислота
С 5 Н 11 СООН Гексановая кислота Капроновая кислота
С 6 Н 13 СООН Гептановая кислота Энантовая кислота
С 7 Н 15 СООН Октановая кислота Каприловая кислота
С 8 Н 17 СООН Нонановая кислота Пеларголовая кислота
НООС - СООН Этандиовая кислота Щавелевая кислота(соль – оксалат)
НООС –СН 2 - СООН Пропандиовая кислота Малоновая кислота
НООС –(СН 2) 2 - СООН Бутандиовая кислота Янтарная кислота
С 17 Н 33 СООН(непред) Октадекеновая кислота Олеиновая кислота
С 15 Н 31 СООН(пред) Гексадекановая кислота Пальмитиновая кислота
С 17 Н 35 СООН(пред) Октадекановая кислота Стеариновая кислота(соль – стеарат)

Органические вещества товаров - это соединения, в состав которых входят атомы углерода и водорода. Они подразделяются на мономеры, олигомеры и полимеры.

Мономеры - органические вещества, состоящие из одного соединения и не подвергающиеся расщеплению с образованием новых органических веществ. Распад мономеров происходит в основном до углекислого газа и воды.

Моносахариды - мономеры, относящиеся к классу углеводов, в состав молекулы которых входят углерод, водород и кислород (СН2О)n. Наибольшее распространение из них имеют гексозы (С6Н12О6) - глюкоза и фруктоза. Они встречаются в основном в пищевых продуктах растительного происхождения (плодах и овощах, вкусовых напитках и кондитерских изделиях). Промышленностью выпускается также чистая глюкоза и фруктоза как продукт питания и сырье для производства кондитерских изделий и напитков для диабетиков. Из натуральных продуктов больше всего глюкозы и фруктозы (до 60 %) содержит мед.

Моносахариды придают продуктам сладкий вкус, обладают энергетической ценностью (1 г - 4 ккал) и влияют на гигроскопичность содержащих их продуктов. Растворы глюкозы и фруктозы хорошо сбраживаются дрожжами и используются другими микроорганизмами, поэтому при содержании до 20 % и повышенном содержании воды ухудшают сохраняемость.

Органические кислоты - соединения, в составе молекулы которых находится одна или несколько карбоксильных групп (-СООН).

В зависимости от числа карбоксильных групп органические кислоты подразделяются на моно-, ди- и трикарбоновые кислоты. Другими классификационными признаками этих кислот служит число атомов углерода (от С2 до С40), а также амино- и фенольных групп.

Природные органические кислоты содержатся в свежих плодах и овощах, продуктах их переработки, вкусовых товарах, а также в кисломолочных продуктах, сырах, кисломолочном сливочном масле.

Органические кислоты - соединения, придающие продуктам кислый вкус. Поэтому они используются в виде пищевых добавок в качестве подкислителей (уксусная, лимонная, молочная и другие кислоты) для сахаристых кондитерских изделий, алкогольных и безалкогольных напитков, соусов.

Наибольшее распространение в пищевых продуктах имеют молочная, уксусная, лимонная, яблочная и винная кислоты. Отдельные виды кислот (лимонная, бензойная, сорбиновая) обладают бактерицидными свойствами, поэтому их используют в качестве консервантов. Органические кислоты пищевых продуктов относятся к дополнительным энергетическим веществам, так как при их биологическом окислении выделяется энергия.

Жирные кислоты - карбоновые кислоты алифатического ряда, имеющие не менее шести атомов углерода в молекуле (С6-С22 и выше). Они подразделяются на высшие (ВЖК) и низкомолекулярные (НЖК).

Важнейшие природные насыщенные ВЖК - стеариновая и пальмитиновая, а ненасыщенные - олеиновая, арахидоновая, линолевая и линоленовая. Из них последние две относятся к полиненасыщенным незаменимым жирным кислотам, обусловливающим биологическую эффективность пищевых продуктов. Природные ВЖК могут содержаться в виде жиров во всех жи-росодержащих продуктах, однако в свободном виде они встречаются в небольшом количестве, так же как и НЖК.

Аминокислоты - карбоновые кислоты, содержащие одну или несколько аминогрупп (NH2).

Аминокислоты в товарах могут находиться в свободном виде и в составе белков. Всего известно около 100 аминокислот, из них почти 80 встречаются только в свободном виде. Глютаминовая кислота и ее натриевая соль широко применяются в качестве пищевой добавки в составе приправ, соусов, пищевых концентратов на мясной и рыбной основах, так как усиливают вкус мяса и рыбы.

Витамины - низкомолекулярные органические соединения, являющиеся регуляторами или участниками процессов обмена веществ в организме человека.

Витамины могут самостоятельно участвовать в обмене веществ (например, витамины С, Р, А и т.п.) или входить в состав ферментов, катализирующих биохимические процессы (витамины В1, В2, В3, В6 и др.).

Кроме указанных общих свойств, каждый витамин имеет специфические функции и свойства. Эти свойства рассматриваются в рамках дисциплины «Физиология питания».

В зависимости от растворимости витамины подразделяются следующим образом:

  • на водорастворимые (В1, В2, В3, РР, В6, В9, В12, С и др.);
  • жирорастворимые (А, Д, Е, К).

К группе витаминов относят также витаминоподобные вещества, часть из которых называют витаминами (каротин, холин, витамин U и др.).

Спирты - органические соединения, содержащие в молекулах одну или несколько гидроксильных групп (ОН) у насыщенных атомов углерода. По количеству этих групп различают одно-, двух- (гликоли), трех- (глицерин) и многоатомные спирты. Этиловый спирт получают в качестве готовой продукции в спиртовой промышленности, а также в виноделии, ликеро-во-дочной, пивоваренной промышленности, при производстве вин, водок, коньяка, рома, виски, пива. Кроме того, этиловый спирт в небольших количествах образуется при производстве кефира, кумыса и кваса.

Олигомеры - органические вещества, состоящие из 2-10 остатков молекул однородных и разнородных веществ.

В зависимости от состава олигомеры подразделяются на однокомпонентные, двух-, трех- и многокомпонентные. К одно-компонентным олигомерам относятся некоторые олигосахариды (мальтоза, трегалоза), к двухкомпонентным - сахароза, лактоза, жиры-моноглицериды, в состав которых входят остатки молекул глицерина и только одной жирной кислоты, а также гликозиды, сложные эфиры; к трехкомпонентным - рафиноза, жиры-диглицериды; к многокомпонентным - жиры-триглице-риды, липоиды: фосфатиды, воски и стероиды.

Олигосахариды - углеводы, в состав которых входят 2-10 остатков молекул моносахаридов, связанных гликозидными связями. Различают ди-, три- и тетрасахариды. Наибольшее распространение в пищевых продуктах имеют дисахариды - сахароза и лактоза, в меньшей мере - мальтоза и трегалоза, а также трисахариды - рафиноза. Указанные олигосахариды содержатся только в пищевых продуктах.

Сахароза (свекловичный, или тростниковый сахар) - дисахарид, состоящий из остатков молекул глюкозы и фруктозы. При кислотном или ферментативном гидролизе сахароза распадается на глюкозу и фруктозу, смесь которых в соотношении 1:1 называют инвертным сахаром. В результате гидролиза усиливается сладкий вкус продуктов (например, при созревании плодов и овощей), поскольку фруктоза и инвертный сахар обладают повышенной степенью сладости, чем сахароза. Так, если степень сладости сахарозы принять за 100 условных единиц, степень сладости фруктозы будет равна 220, а инвертного сахара - 130.

Сахароза является преобладающим сахаром следующих пищевых продуктов: сахара-песка, сахара-рафинада (99,7-99,9 %), сахаристых кондитерских изделий (50-96 %), некоторых плодов и овощей (бананы - до 18 %, дыни - до 12 %, лук - до 10-12 %) и т.д. Кроме того, сахароза может содержаться в небольших количествах и в других пищевых продуктах растительного происхождения (зерномучных товарах, во многих алкогольных и безалкогольных напитках, слабоалкогольных коктейлях, мучных кондитерских изделиях), а также сладких молочных товарах - мороженом, йогуртах и т.п. Сахароза отсутствует в пищевых продуктах животного происхождения.

Лактоза (молочный сахар) - дисахарид, состоящий из остатков молекул глюкозы и галактозы. При кислотном или ферментативном гидролизе лактоза распадается до глюкозы и галактозы, которые и используются живыми организмами: человеком, дрожжами или молочнокислыми бактериями.

Лактоза по степени сладости значительно уступает сахарозе и глюкозе, которая входит в ее состав. Уступает она им и по распространенности, так как содержится в основном в молоке разных видов животных (3,1-7,0 %) и отдельных продуктах его переработки. Однако при использовании молочнокислого и/или спиртового брожений в процессе производства (например, кисломолочных продуктов) и/или сычужного фермента (при производстве сыров) лактоза полностью сбраживается.

Мальтоза (солодовый сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Это вещество встречается как продукт неполного гидролиза крахмала в солоде, пиве, хлебе и мучных кондитерских изделиях, приготовленных с использованием проросшего зерна. Она содержится только в небольших количествах.

Трегалоза (грибной сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Этот сахар мало распространен в природе и содержится в основном в пищевых продуктах одной группы - свежих и сушеных грибах, а также в натуральных консервах из них и дрожжах. В квашеных (соленых) грибах трегалоза отсутствует, поскольку расходуется при брожении.

Рафиноза - трисахарид, состоящий из остатков молекул глюкозы, фруктозы и галактозы. Как и трегалоза, рафиноза - мало распространенное вещество, встречающееся в небольших количествах в зерномучных товарах и свекле.

Свойства. Все олигосахариды являются запасными питательными веществами растительных организмов. Они хорошо растворимы в воде, легко подвергаются гидролизу до моносахаридов, обладают сладким вкусом, но степень их сладости различна. Исключение составляет лишь рафиноза - несладкая на вкус.

Олигосахариды гигроскопичны, при высоких температурах (160-200 °С) происходит их карамелизация с образованием темноокрашенных веществ (карамелинов и др.). В насыщенных растворах олигосахариды могут образовывать кристаллы, которые в ряде случаев ухудшают консистенцию и внешний вид продуктов, вызывая образование дефектов (например, засахаривание меда или варенья; образование кристаллов лактозы в сгущенном молоке с сахаром).

Липиды и липоиды - олигомеры, в состав которых входят остатки молекул трехатомного спирта глицерина или других высокомолекулярных спиртов, жирных кислот, а иногда и других веществ.

Липиды - это олигомеры, являющиеся сложными эфирами глицерина и жирных кислот - глицеридами. Смесь природных липидов, в основном триглицеридов, принято называть жирами. В товарах содержатся именно жиры.

В зависимости от количества остатков молекул жирных кислот в глицеридах различают моно-, ди- и триглицериды, а в зависимости от преобладания предельных или непредельных кислот жиры бывают жидкие и твердые. Жидкие жиры бывают чаще всего растительного происхождения (например, растительные масла: подсолнечное, оливковое, соевое и т.п.), хотя есть и твердые растительные жиры (какао-масло, кокосовое, пальмоядровое). Твердые жиры - это в основном жиры животного или искусственного происхождения (говяжий, бараний жир; коровье масло, маргарин, кулинарные жиры). Однако среди животных жиров есть и жидкие (рыбий, китовый и т.п.).

В зависимости от количественного содержания жиров все потребительские товары можно подразделить на следующие группы.

1. Товары с супервысоким содержанием жиров (90,0-99,9 %). К ним относятся растительные масла, животные и кулинарные жиры, коровье топленое масло.

2. Товары с преимущественным содержанием жиров (60-89,9 %) представлены сливочным маслом, маргарином, шпиком свинины, орехами: грецкими, кедровыми, фундуком, миндалем, кешью и т.п.

3. Товары с высоким содержанием жиров (10-59 %). В эту группу входят концентрированные молочные продукты: сыры, мороженое, молочные консервы, сметана, творог, сливки с повышенной жирностью, майонез; жирные и средней жирности мясо, рыба и продукты их переработки, икра рыб; яйцо; необезжиренная соя и продукты ее переработки; торты, пирожные, сдобное печенье, орехи, арахис, шоколадные изделия, халва, кремы на жировой основе и др.

4. Товары с низким содержанием жиров (1,5-9,9 %) - бобовые крупы, закусочные и обеденные консервы, молоко, сливки, кроме высокожирных, кисломолочные напитки, отдельные виды нежирной рыбы (например, семейства тресковых) или мяса II категории упитанности и субпродуктов (кости, головы, ножки и т.п.).

5. Товары с очень низким содержанием жиров (0,1-1,4 %) - большинство зерномучных и плодоовощных товаров.

6. Товары, не содержащие жиров (0 %), - слабоалкогольные и безалкогольные напитки, сахаристые кондитерские изделия, кроме карамели и конфет с молочными и ореховыми начинками, ириса; сахар; мед.

Общие свойства. Жиры являются запасными питательными веществами, обладают самой высокой энергетической ценностью среди других питательных веществ (1 г - 9 ккал), а также биологической эффективностью, если содержат полиненасыщенные незаменимые жирные кислоты. Жиры имеют относительную плотность меньше 1, поэтому легче воды. Они нерастворимы в воде, но растворимы в органических растворителях (бензине, хлороформе и др.). С водой жиры в присутствии эмульгаторов образуют пищевые эмульсии (маргарин, майонез).

Жиры подвергаются гидролизу при действии фермента липазы или омылению под действием щелочей. В первом случае образуется смесь жирных кислот и глицерина; во втором - мыла (солей жирных кислот) и глицерина. Ферментативный гидролиз жиров может происходить и при хранении товаров. Количество образующихся свободных жирных кислот характеризуется кислотным числом.

Усвояемость жиров во многом зависит от интенсивности липаз, а также температуры плавления. Жидкие жиры с низкой температурой плавления усваиваются лучше, чем твердые с высокой температурой плавления. Высокая интенсивность усвоения жиров при наличии большого количества этих или других энергетических веществ (например, углеводов) приводит к отложению их избытка в виде жира-депо и ожирению.

Жиры, содержащие непредельные (ненасыщенные) жирные кислоты, способны к окислению с последующим образованием перекисей и гидроперекисей, которые оказывают вредное воздействие на организм человека. Товары с прогоркшими жирами утрачивают безопасность и подлежат уничтожению или промпереработке. Прогоркание жиров служит одним из критериев окончания срока годности или хранения жиросодержащих товаров (овсяной крупы, пшеничной муки, печенья, сыров и др.). Способность жиров к прогорканию характеризуется йодным и перекисным числами.

Жидкие жиры с высоким содержанием непредельных жирных кислот могут вступать в реакцию гидрогенизации - насыщения таких кислот водородом, при этом жиры приобретают твердую консистенцию и выполняют функцию заменителей некоторых твердых животных жиров. Данная реакция положена в основу производства маргарина и маргариновой продукции.

Липоиды - жироподобные вещества, в состав молекул которых входят остатки глицерина или других высокомолекулярных спиртов, жирных и фосфорной кислот, азотистых и других веществ.

К липоидам относятся фосфатиды, стероиды и воски. От липидов они отличаются наличием фосфорной кислоты, азотистых оснований и других веществ, отсутствующих в липидах. Это более сложные вещества, чем жиры. Большинство их объединяет наличие в составе жирных кислот. Второй компонент - спирт - может иметь разную химическую природу: в жирах и фосфатидах - глицерин, в стероидах - высокомолекулярные циклические спирты-стерины, в восках - высшие жирные спирты.

Наиболее близки по химической природе к жирам фосфатиды (фосфолипиды) - сложные эфиры глицерина жирных и фосфорной кислот и азотистых оснований. В зависимости от химической природы азотистого основания выделяют следующие разновидности фосфатидов: лецитин (новое название - фосфатидилхолин), в составе которого содержится холин; а также кефалин, содержащий этаноламин. Наибольшее распространение в природных продуктах и применение в пищевой промышленности имеет лецитин. Лецитином богаты желтки яиц, субпродукты (мозги, печень, сердце), молочный жир, бобовые крупы, особенно соя.

Свойства. Фосфолипиды обладают эмульгирующими свойствами, благодаря чему лецитин используется в качестве эмульгатора при производстве маргарина, майонеза, шоколада, мороженого.

Стероиды и воски являются сложными эфирами высокомолекулярных спиртов и высокомолекулярных жирных кислот (С16-С36). Они отличаются от других липоидов и липидов отсутствием в их молекулах глицерина, а друг от друга - спиртами: стероиды содержат остатки молекул стеринов - циклических спиртов, а воски - одноатомные спирты с 12-46 атомами С в молекуле. Основной стерин растений - β-ситостерин, животных - холестерин, микроорганизмов - эргостерин. Ситостерином богаты растительные масла, холестерином - коровье масло, яйцо, субпродукты.

Свойства. Стероиды нерастворимы в воде, не омыляются щелочами, имеют высокую температуру плавления, обладают эмульгирующими свойствами. Холестерин и эргостерин под воздействием ультрафиолетовых лучей могут превращаться в витамин D.

Гликозиды - олигомеры, в которых остаток молекул моносахаридов или олигосахаридов связан с остатком неуглеводного вещества - аглюкона через гликозидную связь.

Гликозиды содержатся только в пищевых продуктах, в основном растительного происхождения. Особенно их много в плодах, овощах и продуктах их переработки. Гликозиды этих продуктов представлены амигдалином (в ядрах косточковых плодов, миндаля, особенно горького), соланином и чаконином (в картофеле, томатах, баклажанах); гесперидином и нарингином (в цитрусовых), синигрином (в хрене, редьке), рутином (во многих плодах, а также гречневой крупе). В небольших количествах гликозиды содержатся и в продуктах животного происхождения.

Свойства. гликозиды растворимы в воде и спирте, многие из них обладают горьким и/или жгучим вкусом, специфичным ароматом (например, амигдалин имеет горькоминдальный аромат), бактерицидными и лечебными свойствами (например, синигрин, сердечные гликозиды и др.).

Эфиры - олигомеры, в молекуле которых остатки молекул входящих в них веществ объединены простыми или сложными эфирными связями.

В зависимости от этих связей различают простые и сложные эфиры.

  • Простые эфиры входят в состав товаров бытовой химии (растворители) и парфюмерно-косметических изделий. В продовольственных товарах отсутствуют, но могут применяться как вспомогательное сырье в пищевой промышленности.
  • Сложные эфиры - соединения, состоящие из остатков молекул карбоновых кислот и спиртов.

Сложные эфиры низших карбоновых кислот и простейших спиртов обладают приятным фруктовым запахом, поэтому их иногда называют фруктовыми эфирами.

Сложные (фруктовые) эфиры совместно с терпенами и их производными, ароматическими спиртами (эвгенолом, линало-олом, анетолом и др.) и альдегидами (коричным, ванильным и т.п.) входят в состав эфирных масел, которые обусловливают аромат многих пищевых продуктов (фруктов, ягод, вин, ликероналивочных, кондитерских изделий). Сложные эфиры, их композиции и эфирные масла являются самостоятельным товаром - пищевыми добавками, например ароматизаторами.

Свойства. Сложные эфиры легко летучи, нерастворимы в воде, но растворимы в этиловом спирте и растительных маслах. Эти свойства используются для извлечения их из пряно-ароматического сырья. Сложные эфиры гидролизуются под действием кислот и щелочей с образованием входящих в их состав карбоновых кислот или их солей и спиртов, а также вступают в реакции конденсации с образованием полимеров и переэтирификации с получением новых эфиров за счет замены одного спиртового или кислотного остатка.

Полимеры - высокомолекулярные вещества, состоящие из десятков и более остатков молекул однородных или разнородных мономеров, соединенных химическими связями.

Они характеризуются молекулярной массой от нескольких тысяч до нескольких миллионов кислородных единиц и состоят из мономерных звеньев. Мономерное звено (ранее называемое элементарное) - составное звено, которое образуется из одной молекулы мономера при полимеризации. Например, в крахмале - С6Н10О5. С увеличением молекулярной массы и количества звеньев возрастает прочность полимеров.

По происхождению полимеры делят на природные, или биополимеры (например, белки, полисахариды, полифенолы и т.п.), и синтетические (например, полиэтилен, полистирол, фенолоальдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают линейные полимеры с открытой линейной цепью (например, натуральный каучук, целлюлоза, амилоза), разветвленные полимеры, имеющие линейную цепь с ответвлениями (например, амилопектин), глобулярные полимеры, отличающиеся преобладанием сил внутримолекулярного взаимодействия между группами атомов, входящих в молекулу, над силами межмолекулярного взаимодействия (например, белки мышечной ткани мяса, рыбы и т.п.), и сетчатые полимеры с трехмерными сетками, образованными отрезками высокомолекулярных соединений цепного строения (например, отверженные фенолоальдегидные смолы). Существуют и другие структуры макромолекул полимеров (лестничные и т.п.), но они встречаются редко.

По химическому составу макромолекулы различают гомополимеры и сополимеры. Гомополимеры - высокомолекулярные соединения, состоящие из одноименного мономера (например, крахмал, целлюлоза, инулин и др.). Сополимеры - соединения, образованные из нескольких различных мономеров (двух и более). Примером могут служить белки, ферменты, полифенолы.

Биополимеры - природные высокомолекулярные соединения, образующиеся в процессе жизнедеятельности растительных или животных клеток.

В биологических организмах биополимеры выполняют четыре важнейшие функции:

1) рациональное запасание питательных веществ, которые организм расходует при нехватке или отсутствии поступления их извне;

2) формирование и поддержание в жизнеспособном состоянии тканей и систем организмов;

3) обеспечение необходимого обмена веществ;

4) защита от внешних неблагоприятных условий.

Перечисленные функции биополимеры продолжают выполнять частично или полностью и в товарах, сырьем для которых служат определенные биоорганизмы. При этом преобладание тех или иных функций биополимеров зависит от того, какие потребности удовлетворяют конкретные товары. Например, пищевые продукты выполняют в первую очередь энергетические и пластические потребности, а также потребность во внутренней безопасности, поэтому в их составе преобладают запасные усвояемые (крахмал, гликоген, белки и т.п.) и неусвояемые (целлюлоза, пектиновые вещества) или трудноусвояемые биополимеры (некоторые белки), характеризующиеся высокой механической прочностью и защитными свойствами. В плодоовощных товарах присутствуют биополимеры, обладающие бактерицидным действием, что обеспечивает дополнительную защиту от неблагоприятных внешних воздействий, в первую очередь микробиологического характера.

Биополимеры продовольственных товаров представлены усвояемыми и неусвояемыми полисахаридами, пектиновыми веществами, усвояемыми и трудно- или неусвояемыми белками, а также полифенолами.

В продовольственных товарах растительного происхождения преобладающими биополимерами являются полисахариды и пектиновые вещества, а в товарах животного происхождения - белки. Известны товары растительного происхождения, состоящие почти целиком из полисахаридов с небольшим количеством примесей (крахмал и крахмалопродукты). В товарах животного происхождения полисахариды практически отсутствуют (исключение - мясо и печень животных, которые содержат гликоген), однако товары, которые состоят только из белка, также отсутствуют.

Полисахариды - это биополимеры, содержащие кислород и состоящие из большого числа мономерных звеньев типа С5Н8О4 или С6Н10О5.

По усвояемости организмом человека полисахариды подразделяются на усвояемые (крахмал, гликоген, инулин) и неусвояемые (целлюлоза и др.).

Полисахариды образуются преимущественно растительными организмами, поэтому являются количественно преобладающими веществами продовольственных товаров растительного происхождения (70-100 % сухого вещества). Исключение составляет лишь гликоген, так называемый животный крахмал, образующийся в печени животных. Разные классы и группы товаров отличаются подгруппами преобладающих полисахаридов. Так, в зерномучных товарах (кроме сои), мучных кондитерских изделиях, картофеле и орехах преобладает крахмал. В плодоовощных товарах (кроме картофеля и орехов), сахаристых кондитерских изделиях крахмал либо отсутствует, либо содержится в небольших количествах. В этих товарах основными углеводами являются моно- и олигосахариды.

Крахмал - биополимер, состоящий из мономерных звеньев - глюкозидных остатков.

Природный крахмал представлен двумя полимерами: амилозой с линейной цепью и амилопектином - с разветвленной, причем последний преобладает (76-84 %). В растительных клетках крахмал формируется в виде крахмальных зерен. Их размер, форма, а также соотношение амилозы и амилопектина являются идентифицирующими признаками природного крахмала определенных видов (картофельного, кукурузного и др.). Крахмал - запасное вещество растительных организмов.

Свойства. Амилоза и амилопектин различаются не только строением, но и свойствами. Амилопектин с большой молекулярной массой (100 000 и более) нерастворим в воде, а амилоза растворима в горячей воде и образует слабовязкие растворы. Образование и вязкость крахмального клейстера обусловлены в значительной мере за счет амилопектина. Амилоза легче, чем амилопектин, подвергается гидролизу до глюкозы. В процессе хранения происходит старение крахмала, вследствие чего снижается его водоудерживающая способность.

  • Продукты с высоким содержанием крахмала (50-80 %), представленные зерномучными товарами - зерном, крупами, кроме бобовых; макаронными и сухарными изделиями, а также пищевой добавкой - крахмалом и модифицированным крахмалом.
  • Продукты со средним содержанием крахмала (10-49 %). К ним относятся картофель, бобовые крупы, кроме сои, в которой отсутствует крахмал, хлеб, мучные кондитерские изделия, орехи, незрелые бананы.
  • Продукты с низким содержанием крахмала (0,1-9 %): большинство свежих плодов и овощей, кроме перечисленных, и продукты их переработки, йогурты, мороженое, вареные колбасы и другие комбинированные продукты, при производстве которых используется крахмал как стабилизатор консистенции или загуститель.

В остальных продовольственных товарах крахмал отсутствует.

Гликоген - резервный полисахарид животных организмов. Он имеет разветвленную структуру и по строению близок к амилопектину. Наибольшее количество его содержится в печени животных (до 10 %). Кроме того, он находится в мышечной ткани, сердце, мозге, а также в дрожжах и грибах.

Свойства. Гликоген образует с водой коллоидные растворы, гидролизуется с образованием глюкозы, дает с йодом красно-бурое окрашивание.

Целлюлоза (клетчатка) - линейный природный полисахарид, состоящий из остатков молекул глюкозы.

Свойства. Целлюлоза является полициклическим полимером с большим числом полярных гидроксильных групп, что придает жесткость и прочность ее молекулярным цепям (а также повышает влагоемкость, гигроскопичность). Целлюлоза нерастворима в воде, не поддается действию слабых кислот и щелочей, а растворяется только в очень немногих растворителях (в медно-аммиачном растворителе и в концентрированных растворах четвертичных аммониевых оснований).

Пектиновые вещества - комплекс биополимеров, основная цепь которых состоит из остатков молекул галактуроновой кислоты.

Пектиновые вещества представлены протопектином, пектином и пектиновой кислотой, которые отличаются молекулярной массой, степенью полимеризации и наличием метальных групп. Общим их свойством является нерастворимость в воде.

Протопектин - полимер, основная цепь которого состоит из большого числа мономерных звеньев - остатков молекул пектина. Протопектин включает молекулы арабана и ксилана. Он входит в состав срединных пластинок, связывающих отдельные клетки в ткани, а также совместно с целлюлозой и гемицеллюлозами - в оболочки растительных тканей, обеспечивая их твердость и прочность.

Свойства. Протопектин подвергается кислотному и ферментативному гидролизу (например, при созревании плодов и овощей), а также деструкции при длительной варке в воде. В результате этого ткани размягчаются, что облегчает усвоение пищевых продуктов организмом человека.

Пектин - полимер, состоящий из остатков молекул метилового эфира и неметилированной галактуроновой кислоты. Пектины разных растений отличаются различной степенью полимеризации и метилирования. Это влияет на их свойства, в частности желирующую способность, благодаря которой пектин и содержащие его в достаточном количестве плоды используются в кондитерской промышленности при производстве мармелада, пастилы, джема и т.п. Желирующие свойства пектина возрастают с увеличением его молекулярной массы и степени метилирования.

Свойства . Пектин подвергается омылению под действием щелочей, а также ферментативному гидролизу с образованием пектиновых кислот и метилового спирта. Пектин нерастворим в воде, не усваивается организмом, но обладает высокой водоудерживающей и сорбционной способностью. Благодаря последнему свойству он выводит из организма человека многие вредные вещества: холестерин, соли тяжелых металлов, радионуклиды, бактериальные и грибные яды.

Пектиновые вещества содержатся только в нерафинированных пищевых продуктах растительного происхождения (зерномучных и плодоовощных товарах), а также в продуктах с добавкой пектина или растительного сырья, богатого им (фруктово-ягодные кондитерские изделия, сбивные конфеты, торты и т.п.).

Белки - природные биополимеры, состоящие из остатков молекул аминокислот, связанных амидными (пептидными) связями, а отдельные подгруппы содержат дополнительно неорганические и органические безазотистые соединения.

Следовательно, по химической природе белки могут быть органическими, или простыми, полимерами и элементоорганическими, или сложными, сополимерами.

Простые белки состоят только из остатков молекул аминокислот, а сложные белки кроме аминокислот могут содержать неорганические элементы (железо, фосфор, серу и др.), а также безазотистые соединения (липиды, углеводы, красящие вещества, нуклеиновые кислоты).

В зависимости от способности растворяться в различных растворителях простые белки подразделяют на следующие виды: альбумины, глобулины, проламины, глютелины, протамины, гистоны, протеноиды.

Сложные белки подразделяются в зависимости от безазотистых соединений, входящих в состав их макромолекул, на следующие подгруппы:

  • фосфоропротеиды - белки, содержащие остатки молекул фосфорной кислоты (казеин молока, вителлин яиц, ихтулин икры рыб). Эти белки нерастворимы, но набухают в воде;
  • гликопротеиды - белки, содержащие остатки молекул углеводов (муцины и мукоиды костей, хрящей, слюны, а также роговицы глаз, слизистой оболочки желудка, кишечника);
  • липопротеиды - белки с остатками молекул липидов (содержатся в мембранах, протоплазме растительной и животных клеток, плазме крови и т.п.);
  • хромопротеиды - белки с остатками молекул красящих соединений (миоглобин мышечной ткани и гемоглобин крови и др.);
  • нуклеопротеиды - белки с остатками нуклеиновых кислот (белки ядер клетки, зародышей семян злаковых, гречишных, бобовых и др.).

В состав белков может входить 20-22 аминокислоты в разном соотношении и последовательности. Эти аминокислоты делятся на незаменимые и заменимые.

Незаменимые аминокислоты - аминокислоты, не синтезируемые в организме человека, поэтому они должны поступать извне с пищей. К ним относятся изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин, аргинин и гистидин.

Заменимые аминокислоты - синтезируемые в организме человека аминокислоты.

В зависимости от содержания и оптимального соотношения незаменимых аминокислот белки подразделяют на полноценные и неполноценные.

Полноценные белки - белки, в состав которых входят все незаменимые аминокислоты в оптимальном для организма человека соотношении. К ним относятся белки молока, яиц, мышечной ткани мяса и рыбы, гречневой круп и др.

Неполноценные белки - белки, в составе которых отсутствует или содержится в недостаточном количестве одна или несколько незаменимых аминокислот. К ним относятся белки костей, хрящей, кожи, соединительных тканей и т.п.

По усвояемости белки подразделяют на усвояемые (белки мышечных тканей, молока, яиц, круп, овощей и т.п.) и трудноусвояемые (эластин, коллаген, кератин и т.д.).

Макромолекулы белков имеют сложное строение. Различают четыре уровня организации белковых молекул: первичную, вторичную, третичную и четвертичную структуры. Первичной структурой называется последовательность аминокислотных остатков в полипептидной цепи, соединенных амидной связью. Вторичная структура относится к типу укладки полипептидных цепей, чаще всего в виде спирали, витки которой удерживаются водородными связями. Под третичной структурой понимают расположение полипептидной цепи в пространстве. У многих белков эта структура образуется из нескольких компактных глобул, называемых доменами и связанных тонкими перемычками - вытянутыми полипептидными цепями. Четвертичная структура отражает способ объединения и расположения в пространстве макромолекул, состоящих из нескольких не связанных ковалентными связями полипептидных цепей.

Между этими субъединицами возникают водородные, ионные и другие связи. Изменение рН, температуры, обработка солями, кислотами и тому подобное приводит к диссоциации макромолекулы на исходные субъединицы, но при устранении указанных факторов происходит самопроизвольная реконструкция четвертичной структуры. Более глубокие изменения структуры белков, включая и третичную, называются денатурацией.

Белки содержатся во многих пищевых продуктах: растительного происхождения - зерномучных, плодоовощных, мучных кондитерских товарах и животного происхождения - мясных, рыбных и молочных товарах. В ряде пищевых продуктов белки либо совсем отсутствуют, либо их содержание ничтожно мало и не имеет существенного значения в питании, хотя может влиять на выпадение осадка или помутнение (например, в соках).

Свойства. Физико-химические свойства белков определяются их высокомолекулярной природой, компактностью укладки полипептидных цепей и взаимным расположением аминокислот. Молекулярная масса белков варьирует от 5 тыс. до 1 млн.

В продовольственных товарах наибольшее значение имеют следующие свойства: энергетическая ценность, ферментативный и кислотный гидролиз, денатурация, набухание, меланоидинообразование.

Энергетическая ценность белков равна 4,0 ккал на 1 г. Однако для организма человека более важна биологическая ценность белков, определяемая содержанием незаменимых аминокислот.

Ферментативный и кислотный гидролиз белков происходит под воздействием протеолитических ферментов и соляной кислоты желудочного сока. Благодаря этому свойству усвояемые белки используются организмом человека, а образующиеся при гидролизе аминокислоты участвуют в синтезе белков организма человека. Гидролиз белков происходит при брожении теста, производстве спирта, вин и пива, квашеных овощей.

Денатурация белков происходит путем обратимых и глубоких необратимых изменений в структуре белка. Обратимая денатурация связана с изменениями в четвертичной структуре, а необратимая - во вторичной и третичной структурах. Денатурация происходит при действии высоких и низких температур, обезвоживании, изменении рН среды, повышенной концентрации сахаров, солей и других веществ, при этом улучшается усвояемость белков, но утрачивается способность к растворению в воде и других растворителях, а также к набуханию. Процесс денатурации белков является одним из наиболее значимых при производстве многих пищевых продуктов и кулинарных изделий (выпечке хлебобулочных и мучных кондитерских изделий, квашении овощей, молока, засолке рыбы и овощей, сушке, консервировании сахаром и кислотами).

Набухание, или гидратация, белков - их способность поглощать и удерживать связанную воду, увеличивая при этом объем. Это свойство положено в основу приготовления теста для хлебобулочных и мучных кондитерских изделий, при производстве колбасных изделий и др. Сохранение белков в набухшем состоянии является важной задачей многих содержащих их пищевых продуктов. Утрата белками водоудерживающей способности, называемой синерезисом, вызывает старение белков муки и круп, особенно бобовых, черствение хлебобулочных и мучных кондитерских изделий.

Меланоидинообразование - способность аминокислотных остатков белков взаимодействовать с редуцирующими сахарами с образованием темноокрашенных соединений - меланоидинов. Это свойство наиболее активно проявляется при повышенных температурах и рН от 3 до 7 при производстве хлебобулочных и мучных кондитерских изделий, пива, консервов, сушеных плодов и овощей. В результате изменяется цвет продуктов от желто-золотистого до коричневого разных оттенков и черного, при этом снижается и биологическая ценность продуктов.

Ферменты - биополимеры белковой природы, являющиеся катализаторами многих биохимических процессов.

Основная функция ферментов - ускорение превращений веществ, поступающих, или имеющихся, или образующихся при обмене веществ в любом биологическом организме (человек, животные, растения, микроорганизмы), а также регулирование биохимических процессов в зависимости от изменяющихся внешних условий.

В зависимости от химической природы макромолекул ферменты подразделяют на одно- и двухкомпонентные. Однокомпонентные состоят только из белка (например, амилаза, пепсин и др.), двухкомпонентные - из белка и небелковых соединений. На поверхности молекулы белка или в специальной щели находятся активные центры, представленные совокупностью функциональных групп аминокислот, непосредственно взаимодействующих с субстратом, и/или небелковые составляющие - коферменты. К последним относятся витамины (В1, В2, РР и др.), а также минеральные вещества (Сu, Zn, Fe и т.п.). Так, к железосодержащим ферментам относятся пероксидаза и каталаза, а к медьсодержащим - аскорбатоксидаза.

  • оксиредуктазы - ферменты, катализирующие окислительно-восстановительные реакции путем перенесения ионов водорода или электронов, например, дыхательные ферменты пероксидаза, каталаза;
  • трансферазы - ферменты, катализирующие перенос функциональных групп (СН3, СООН, NH2 и т.п.) от одной молекулы к другой, например, ферменты, катализирующие дезаминирование и декарбоксилирование аминокислот, образующихся при гидролизе белков сырья (зерна, плодов, картофеля), что приводит к накоплению высших спиртов при производстве этилового спирта, вин и пива;
  • гидролазы - ферменты, катализирующие гидролитическое расщепление связей (пептидной, гликозидной, эфирной и др.). К ним относятся липазы, гидролизирующие жиры, пептидазы - белки, амилазы и фосфорилазы - крахмал и др.;
  • лиазы - ферменты, катализирующие негидролитическое отщепление групп от субстрата с образованием двойной связи и обратные реакции. Например, пируватдекарбоксилаза отщепляет от пировиноградной кислоты СО2, что приводит к образованию ацетоальдегида как промежуточного продукта спиртового и молочнокислого брожений;
  • изомеразы - ферменты, катализирующие образование изомеров субстрата путем перемещения кратных связей или групп атомов внутри молекулы;
  • лигазы - ферменты, катализирующие присоединение двух молекул с образованием новых связей.

Значение ферментов. В неочищенном виде ферменты с древнейших времен используются при производстве многих продовольственных товаров (в хлебопечении, спиртовой промышленности, виноделии, сыроделии и т.д.). Потребительские свойства ряда товаров в значительной мере формируются в процессе особой операции - ферментации (черный, красный, желтый чай, какао-бобы и др.). Очищенные ферментативные препараты начали применять в XX в. при производстве соков, чистых аминокислот для лечения и искусственного питания, удаления лактозы из молока для продуктов детского питания и т.д. При хранении пищевых продуктов ферменты способствуют созреванию мяса, плодов и овощей, но могут вызвать и их порчу (гниение, плесневение, ослизнение, брожение).

Свойства. Ферменты обладают высокой каталитической активностью, благодаря чему небольшое количество их может активизировать биохимические процессы огромных количеств субстрата; специфичностью действия, т.е. определенные ферменты действуют на конкретные вещества; обратимостью действия (одни и те же ферменты могут осуществлять распад и синтез определенных веществ); мобильностью, проявляющейся в изменении активности под воздействием различных факторов (температуры, влажности, рН среды, активаторов и инактиваторов).

Для каждого из указанных свойств характерны определенные оптимальные диапазоны (например, в диапазоне температур 40-50 °С отмечается наибольшая активность ферментов). Любые отклонения от оптимального диапазона вызывают снижение активности ферментов, а иногда и их полную инактивацию (например, высокие температуры стерилизации). На этом основаны многие методы консервирования продовольственного сырья. При этом происходит частичная или полная инактивация собственных ферментов сырья и продукции, а также микроорганизмов, вызывающих их порчу.

Для инактивации ферментов продовольственного сырья и товаров при хранении применяют разнообразные физические, физико-химические, химические, биохимические и комбинированные методы.

Полифенолы - биополимеры, в состав макромолекул которых могут входить фенольные кислоты, спирты и их эфиры, а также сахара и другие соединения.

Эти вещества встречаются в живой природе только в клетках растений. Кроме того, они могут содержаться в древесине и изделиях из нее, торфе, буром и каменном угле, нефтяных остатках.

Наибольшее значение полифенолы имеют в свежих плодах, овощах и продуктах их переработки, включая вина, ликероналивочные изделия, а также в чае, кофе, коньяке, роме и пиве. В указанных продуктах полифенолы влияют на органолептические свойства (вкус, цвет), физиологическую ценность (многие из этих веществ обладают Р-витаминной активностью, бактерицидными свойствами) и сохраняемость.

К полифенолам, содержащимся в товарах растительного происхождения, относятся дубильные (например, катехины), а также красящие вещества (флавоноиды, антоцианы, меланины и др.).

Первый подход – по природе углеводородного скелета

I. Ациклические или алифатические соединения - не содержат цикл:

    предельные (насыщенные, парафиновые)

    непредельные (ненасыщенные) с двойными, тройными связями.

II. Карбоциклические (в цикле только углерод) соединения:

    алициклические – насыщенные и ненасыщенные циклические углеводороды;

    ароматические – сопряженные циклические соединения с особыми ароматическими свойствами.

III. Гетероциклические соединения - в составе цикла гетероатомы (heteros – иной).

Второй подход – по природе функциональной группы, определяющей химические свойства соединения.

Функциональная группа

Название

Углеводороды

Ацетилен

Галогенсодержащие соединения

Галогенопроизводные

–Hal (halogen)

Хлористый этил, этилхлорид

Кислородосодержащие соединения

Спирты, фенолы

CH 3 CH 2 OH

Этиловый спирт, этанол

Простые эфиры

CH 3 –O–CH 3

Диметиловый эфир

Альдегиды

Уксусный альдегид, этаналь

Ацетон, пропанон

Карбоновые кислоты

Уксусная кислота, этановая кислота

Сложные эфиры

Этиловый эфир уксусной кислоты, этилацетат

Галогенангидриды

Хлорангидрид уксусной кислоты, ацетилхлорид

Ангидриды

Ангидрид уксусной кислоты

Амид уксусной кислоты, ацетамид

Азотосодержащие соединения

Нитросоединения

Нитрометан

Этиламин

Ацетонитрил, нитрил уксусной кислоты

Нитрозосоединения

Нитрозобензол

Гидразосоединения

Фенилгидразин

Азосоединения

C 6 H 5 N=NC 6 H 5

Азобензол

Диазонивые соли

Фенилдиазоний хлорид

Номенклатура органических соединений

1) 1892 г. (Женева, Международный химический конгресс) - женевская ;

2) 1930 г. (Льеж, Международный союз теоретической и прикладной химии - International Union of Pure and Applied Chemistry (IUPAC) - льежская ;

Тривиальная номенклатура : названия дают случайно.

Хлороформ, мочевина.

Древесный спирт, винный спирт.

Муравьиная кислота, янтарная кислота.

Глюкоза, сахароза и т.д.

Рациональная номенклатура : в основе «рациональное звено» - название простейшего представителя класса + названия заместителей (начиная с простейшего) с указанием количества при помощи приставок ди-, три-, тетра-, пента- .

Встречается для простых органических соединений, особенно в старой химической литературе.

Положение заместителей указывают латинскими буквами

или словами “симметричный” (симм -), “несимметричный” (несимм -), орто -(о- ), мета - (м -), пара -(п -),

буквами N–(у азота), О–(у кислорода).

Номенклатура IUPAC (международная)

Основные принципы этой системы номенклатуры следующие.

1. В основе - самая длинная углеводородная цепь со старшей функциональной группой, обозначаемой суффиксом.

2. Атомы углерода в цепи нумеруются последовательно с того конца, к которому ближе расположена старшая функциональная группа.

При нумерации предпочтение (при прочих равных условиях) имеет двойная, затем тройная связь.

Если оба варианта нумерации равнозначны, то направление выбирается таким образом, чтобы сумма цифр, указывающих положение заместителей, была наименьшей (правильней – в которой первой стоит меньшая цифра).

3. К основе названия добавляются, начиная с простейшего, названия заместителей, при необходимости – с указанием их количества при помощи приставок ди-, три-, тетра-, пента-.

При этом для каждого заместителя указывают его номер в цепи.

Положение, название заместителей указывают в префиксе перед названием цепи, отделяя цифры дефисом.

Для функциональных групп цифра может стоять перед названием цепи или после названия цепи перед или после названия суффикса с отделением дефисом;

4. Названия заместителей (радикалов) могут быть системные и тривиальные.

Алкильные радикалы называют, изменяя окончание -ан на -ил в названии соответствующего алкана.

В названии радикала отражается тип атома углерода, имеющего свободную валентность: атом углерода, связанный

с одним углеродным атомом, называется первичным –СН 3 ,

с двумя – вторичным
,

с тремя – третичным

с четырьмя – четвертичным .

Другие радикалы, имея или не имея окончание -ил , обычно носят тривиальное название.

Двухвалентные радикалы имеют окончание -ен или -иден.

Базовое соединение

Название

Структура радикала

Название

Одновалентные радикалы

CH 3 –CH 2 –

CH 3 –CH 2 –CH 3

СH 3 –CH 2 –CH 2 –

Изопропил (втор -пропил)

CH 3 –CH 2 –CH 2 –CH 3

CH 3 –CH 2 –CH 2 –CH 2 –

втор -Бутил

Изобутан

Изобутил

трет -Бутил

CH 3 (CH 2) 3 CH 3

CH 3 (CH 2) 3 CH 2 –

(н -амил)

Изопентан

Изопентил (изоамил)

Неопентан

Неопентил

CH 2 =CH–CH 2 –

CH 3 –CH=CH–

Пропенил

Изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из прокисшего вина, а эфирные масла из растений, выделять сахар из сахарного тростника, извлекать природные красители из организмов растений и животных.

Химики разделяли все вещества в зависимости от источника их получения на минеральные (неорганические), животные и растительные (органические).

Долгое время считалось, что для получения органических веществ нужна особая «жизненная сила» - vis Vitalis, которая действует только в живых организмах, а химики способны всего лишь выделять органические вещества из продуктов.

Шведский химик, президент Королевской шведской Академии наук. Научные исследования охватывают все главные проблемы общей химии первой половины XIX в. Экспериментально проверил и доказал достоверность законов постоянства состава и кратных отношений применительно к неорганическим оксидам и органическим соединениям. Определил атомную массу 45 химического элемента. Ввел современные обозначения химических элементов и первые формулы химических соединений.

Шведский химик Й. Я. Берцелиус определил органическую химию как химию растительных или животных веществ, образующихся под влиянием «жизненной силы». Именно Берцелиус ввел понятия органические вещества и органическая химия.

Развитие химии привело к накоплению большого количества фактов и к краху учения о «жизненной силе» - витализма. Немецкий ученый Ф. Вёлер в 1824 г. осуществил первый синтез органических веществ - получил щавелевую кислоту путем взаимодействия двух неорганических веществ - дициана и воды:

N=- C-С=N + 4Н 2 0 -> СООН + 2NН 3
СООН
дициан щавелевая кислота

А в 1828 г. Вёлер, нагревая водный раствор неорганического вещества цианата аммония, получил мочевину - продукт жизнедеятельности животных организмов:


Изумленный таким результатом, Вёлер написал Берцелиусу: «Должен сказать Вам, что я умею приготовить мочевину, не нуждаясь ни в почке, ни в животном организме вообще...»

Вёлер Фридрих (1800--1882}

Немецкий химик. Иностранный член Петербургской Академии наук (с 1853 г.). Его исследования посвящены как неорганической, так и органической химии. Открыл циановую кислоту (1822), получил алюминий (1827), бериллий и иттрий (1828).

В последующие годы блестяшие синтезы анилина Г. Кольбе и Э. Франклендом (1842), жира М. Бер^о (1854), сахаристых веществ А. Бутлеровым (1861) и др. окончательно похоронили миф о «жизненной силе».

Появилось классическое определение К. Шорлеммера, не потерявшее своего значения и более 120 лет спустя:

«Органическая химия есть химия углеводородов и их производных, т. е. продуктов, образующихся при замене водорода другими атомами или группами атомов».

Сейчас органическую химию чаще всего называют химией соединений углерода. Почему же из более чем ста элементов Периодической системы Д. И. Менделеева природа именно углерод положила в основу всего живого? Ответ на этот вопрос неоднозначен. Многое вам станет понятно, когда вы рассмотрите строение атома углерода и поймете слова Д. И. Менделеева, сказанные им в «Основах химии» об этом замечательном элементе: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах... Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях... Ни в одном из элементов... способности к усложнению не развито в такой степени, как в углероде... Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Многочисленные связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических веществ, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) - в растения (фотосинтез), из растений - в животные организмы, из живого - в мертвое, из мертвого - в живое... (рис. 1).

Органические вещества имеют ряд особенностей, которые отличают их от неорганических веществ:

1. Неорганических веществ насчитывается немногим более 100 тыс., тогда как органических - почти 18 млн (табл. 1).


Рис. 1. Круговорот углерода в природе

2. В состав всех органических веществ входят углерод и водород, поэтому большинство из них горючи и при горении обязательно образуют углекислый газ и воду.

3. Органические вещества построены более сложно, чем неорганические, и многие из них имеют огромную молекулярную массу, например те, благодаря которым происходят жизненные процессы: белки, жиры, углеводы, нуклеиновые кислоты и т. д.

4. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам - гомологов.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность СН 2 .

Таблица 1. Рост числа известных органических соединений

5. Для органических веществ характерной является изомерия, очень редко встречающаяся среди неорганических веществ. Вспомните примеры изомеров, с которыми вы знакомились в 9 классе. В чем причина различий в свойствах изомеров?

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т. е. одинаковой молекулярной формулой.

Величайшим обобщением знаний о неорганических веществах является Периодический закон и Периодическая система элементов Д. И. Менделеева. Для органических веществ аналогом такого обобщения служит теория строения органических соединений А. М. Бутлерова . Вспомните, что Бутлеров понимал под химическим строением. Сформулируйте основные положения этой теории.

Для количественной характеристики способности атомов одного химического элемента соединяться с определенным числом атомов другого химического элемента в неорганической химии, где большинство веществ имеет немолекулярное строение, применяют понятие «степень окисления>>. В органической химии, где большинство соединений имеет молекулярное строение, используют понятие «валентность». Вспомните, что означают эти понятия, сравните их.

Велико значение органической химии в нашей жизни. В любом организме в любой момент протекает множество превращений одних органических веществ в другие. Поэтому без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т. е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды (что это такое?), синтетические витамины, гормоны, лекарства и т. д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами (табл. 2).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Copyright © 2024. Мода и стиль. Уход за лицом и ногами. Правила макияжа. Полезные советы