Правила макияжа

Дистанционные методы. Дистанционные методы получения информации о земле

Дистанционные методы. Дистанционные методы получения информации о земле
Рабочая программа учебной
дисциплины

УТВЕРЖДАЮ

Проректор-директор ИПР

«_____» ________ 201 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дистанционные методы ИССЛЕДОВАНИЙ

НАПРАВЛЕНИЕ ООП: 022000 ЭКОЛОГИЯ И ПРИРОДОПОЛЬЗОВАНИЕ

ПРОФИЛЬ ПОДГОТОВКИ: Геоэкология

КВАЛИФИКАЦИЯ (СТЕПЕНЬ): бакалавр

БАЗОВЫЙ УЧЕБНЫЙ План ПРИЕМА 2010 г. (с изменениями 2012 г.)

КУРС 3; СЕМЕСТР 5;

КОЛИЧЕСТВО КРЕДИТОВ: 3

ПРЕРЕКВИЗИТЫ: Геология; География; Экология;

КОРЕКВИЗИТЫ: Геоинформационные системы в экологии; Ресурсы Земли; Охрана окружающей среды

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

часов (ауд.)

Лабораторные занятия

часов (ауд.)

Практические занятия

часов (ауд.)

АУДИТОРНЫЕ ЗАНЯТИЯ

5 1

САМОСТОЯТЕЛЬНАЯ РАБОТА

часа

ФОРМА ОБУЧЕНИЯ

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: ЗАЧЕТ В 5 СЕМЕСТРЕ

Обеспечивающая кафедра: «Геоэкологии и геохимии »

ЗАВЕДУЮЩИЙ КАФЕДРОЙ: д. г.-м. н., профессор

РУКОВОДИТЕЛЬ ООП: д. г.-м. н., профессор

ПРЕПОДАВАТЕЛЬ: к. г.н., доцент

ФТПУ 7.1-21/01

Рабочая программа учебной
дисциплины

Предисловие

1. Рабочая программа составлена на основе Федерального государственного образовательного стандарта по направлению 022000 «Экология и природопользование », утвержденного 22 декабря 2009 г. № 000

РАССМОТРЕНА и ОДОБРЕНА на заседании обеспечивающей кафедры геоэкологии и геохимии 13.10.2011 г. протокол

2. Разработчики:

доцент кафедры ГЭГХ ____________

3. Зав. обеспечивающей кафедрой ГЭГХ ____________

4.Рабочая программа СОГЛАСОВАНА с институтом, выпускающими кафедрами направления; СООТВЕТСТВУЕТ действующему плану.

Зав. выпускающей кафедрой ___________

1. Цели освоения дисциплины

В результате освоения данной дисциплины студент приобретает знания, умения и навыки, обеспечивающие достижение целей основной образовательной программы «Экология и природопользование».

Студент, изучивший курс «Дистанционные методы исследования», должен знать:

Основные современные системы, методы и технологии дистанционных методов исследования окружающей среды и спектры решаемых геоэкологических задач;

Цели предмета «Дистанционные методы исследования» достигаются за счёт выполнения комплекса учебно-методических работ:

Овладение общетеоретическими знаниями о современных методах дистанционных исследований окружающей среды;

Умение на лабораторных занятиях применять современные методы дистанционного зондирования для решения широкого спектра геоэкологических задач;

Освоение общих принципов обработки данных ДМИ, возможности получения результатов ДМИ, доступа к информации.

2. Место дисциплины в структуре ООП

Дисциплина относится к дисциплинам математического и естественнонаучного цикла (Б.2). Она непосредственно связана с дисциплинами естественнонаучного и математического цикла («Геология», «География», «Экология» и др.) и частично опирается на освоенные при изучении данных дисциплин знания и умения.

Знания и умения, полученные при освоении данной дисциплины, являются основой для изучения ряда дисциплин математического и естественнонаучного (Б.2) и профессионального (Б.3) циклов: «Ресурсы Земли», «Охрана окружающей среды», «Оценка воздействия на окружающую среду», «Геоэкология», «Основы поисков и геолого-экономической оценки природных ресурсов», «Геоинформационные системы в экологии».

3. Результаты освоения дисциплины

Студент, изучивший дисциплину «Дистанционные методы исследования» должен уметь:

Четко формулировать задачи, комплексирование дистанционных методов при геоэкологических исследованиях разного масштаба и ориентации мониторинга окружающей среды;

Уметь на основе анализа литературных источников и комплекта космических снимков давать оценку состояния окружающей среды.

После изучения данной дисциплины студенты приобретают знания, умение и опыт, соответствующие результатам основной образовательной программы. Соответствие результатов освоения дисциплины «Дистанционные методы исследования» формируемым компетенциям ООП представлено в таблице.

Формируемые компетенции в соответствии с ООП*

Результаты освоения дисциплины

ОК-1, ОК-2, ОК-6, ОК - 13

В общекультурными компетенциями:

Владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;

Уметь логически верно, аргументировано и ясно строить устную и письменную речь;

Иметь базовые знания в области информатики и современных геоинформационных технологий , владеть навыками использования программных средств и работы в компьютерных сетях, умением создавать базы данных и использовать ресурсы Интернета, владеть ГИС-технологиями; уметь работать с информацией из различных источников для решения профессиональных и социальных задач;

Владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией.

В результате освоения дисциплины бакалавр должен обладать следующими профессиональными компетенциями:

Компетенциями в области «Природопользование»:

Знать теоретические основы биогеографии , общего ресурсоведения и регионального природопользования, картографии.

*Расшифровка кодов результатов обучения и формируемых компетенций представлена в ФГОС ВПО по направлению подготовки бакалавров по направлению 022000 «Экология и природопользование».

4. Структура и содержание дисциплины

Раздел 1. Введение

Лекции. Определение и содержание понятий «дистанционные методы исследований» (ДМИ) и «дистанционное зондирование земли» (ДЗЗ). Взаимосвязь с основными дисциплинами учебного плана. Актуальность применения ДМИ. Основные группы методов. Исторические сведения об использовании ДМИ. Развитие ДМИ и ДЗЗ в Мире, России, г. Томске, ТПУ. Научная и учебная литература , периодические и информационно-справочные издания.

Раздел 2. Физические основы ДМИ. Электромагнитное излучение (ЭМИ) как основа ДМИ.

2.1. Общие сведения об ЭМИ

Лекции. Определение и основные характеристики (параметры) ЭМИ. Шкала длин волн, основные диапазоны (излучения): космическое, гамма, рентгеновское, оптическое (ультрафиолетовое, видимое, инфракрасное или тепловое), радиодиапазон (СВЧ, ВЧ, УКВ, КВ, средневолновое, длинноволновое), сверхнизкочастотное (пульсации звезд, катаклизмы типа землетрясений, извержений вулканов и т. п.). Спектральная (длина волны, энергия кванта, интенсивность…), временная и поляризационная характеристики ЭМИ. Особенности лазерного излучения. Основные диапазоны, используемые в ДМИ. Основные ДМИ по типу измеряемой энергии и их характеристика (пассивные, активные).

Солнце как основной источник ЭМИ в природе. Характеристика спектра солнечной радиации.

Лабораторная работа 1-2. Занятие с учебно-методическими материалами (Альбомы космоснимков, образцы дешифрирования аэрофотоснимков, Дешифрирование многозональных аэрокосмических снимков).

2.2. Взаимодействие ЭМИ с атмосферой

Лекции Основные физические и химические параметры атмосферы, влияющие на ЭМИ. Взаимодействие ЭМИ с озоном. Зоны прозрачности атмосферы для теплового излучения. Взаимодействие атмосферы с ЭМИ микроволнового диапазона. Причины избирательного поглощения и рассеяния. ЭМИ в атмосфере (рассеяние Рэлея, Ми). Влияние положения участка земной поверхности по отношению к Солнцу на характеристику ЭМИ и особенности применения ДМИ для решения различных задач.

2.3. Взаимодействие ЭМИ с различными веществами и средами на поверхности Земли

Лекции. Характеристика главных процессов взаимодействия ЭМИ с веществами на поверхности Земли (отражение, рассеивание, абсорбция , трансмиссия, эмиссия) и их важнейшие константы (альбедо, коэффициент поглощения, экстинкция, чистое пропускание, эмиссия). Основные факторы взаимодействия, влияющие на эффективность применения ДМИ при решении геоэкологических задач.

Раздел 3. Основные характеристики природных сред и материалов для ДМИ

3.1. Характеристики горных пород

Лекции. Отражательная и поглощательная способности горных пород, их зависимость от минералогических и геохимических характеристик, генетической породы. Диагностика горных пород при ДМИ. Влияние вторичных процессов (гидротермальные изменения, выветривание) на первичные характеристики пород. Части спектра ЭМИ, в которых горные породы обладают высокими контрастными характеристиками.

Вторичное тепловое излучение (эмиссия) горных пород. Взаимосвязь вещественного состава, генетических особенностей горных пород с их физическими свойствами и эмиссией. Условия благоприятные для проведения инфракрасных съёмок.

Использование спектральных характеристик горных пород при ДМИ в целях геокартирования, решения геоэкологических задач, прогнозирования и поисков месторождений полезных ископаемых .

Лабораторная работа 3. Поиск данных по темам дистанционного зондирования в сети Internet

3.2. Характеристика почв

Лекции. Отражательная и поглотительная способности почв, их отличие от горных пород. Причины отличия. Различие основных типов почв по их спектральной яркости. Связь спектральной характеристики почв с их основными параметрами (минеральный и химический состав, содержание органики, влажность , структура и др.). Спектральные каналы для изучения основных характеристик почв.

Тепловое излучение почв. Основные свойства почв, определяющие её температурные характеристики.

Использование характеристик почв при ДМИ для их картирования и решения геоэкологических задач.

3.3. Характеристика растительности

Лекции. Отражательная и пропускная способность. Спектральные характеристики отраженного и прошедшего излучения при его взаимодействии с различными растительными сообществами, с больной и здоровой листвой. Влияние внешних факторов на характеристики растений (климат, тип почв, характер питательных и загрязняющих веществ и др.).

Характеристика теплового (температурного) излучения растений и его связь с внутренними и внешними факторами.

Смещение спектральных характеристик растительных сообществ как чуткий индикатор изменения различных факторов окружающей среды.

3.4. Характеристика вод озёр, рек, морей

Лекции. Процессы рассеяния и поглощения света, происходящие в толще воды. Зависимость спектральных характеристик воды от различных факторов (мутность, взвеси, планктон, солёность, температура и т. д.) и их проявленность в различных частях спектра ЭМИ. Актуальность исследования и мониторинга акваторий дистанционными методами.

Раздел 4. Техника и методика дистанционных исследований, характер решаемых задач. Основные группы ДМИ (космические, аэро-, наземные), уровень их развития и возможности прогресса, решаемые задачи, доступность потребителю.

4.1. Системы и приборы ДЗ из космоса

Лекции. Основные типы космических носителей, их характеристика и возможности решения задач ДЗЗ. Главные типы космических орбит (по форме, по наклонению, по отношению к Солнцу или Земле, по высоте) и их использование для ДЗЗ.

Методы измерений и наблюдений из космоса (фотографические, телевизионные, сканерные, радиолокационные и др.), решаемые задачи, преимущества и недостатки.

Отечественные и зарубежные современные космические системы и программы ДЗЗ, сравнительный анализ, решаемые задачи.

Доступ к информации ДЗ из космоса потребителей за рубежом, в России, в Западной Сибири, в Томске. Центры, лаборатории, пункты, станции приёма, хранения и тематической интерпретации данных. Возможность доступа к архивным данным, оперативность исполнения текущих заказов, стоимость основных услуг.

Региональные центры: - Западно-Сибирский региональный центр приёма и обработки спутниковых данных (ЗапСиб РЦ ПОД), Центр космического мониторинга природных ресурсов и процессов Сибири (ЦКПС); решаемые задачи, возможности создания и использования региональной ГИС.

Персональные станции приёма (ППС) информации ДЗЗ, основные характеристики, возможности. Требования к ППС.

Использование данных ДЗЗ из космоса при геоэкологических исследованиях и мониторинге окружающей среды.

Лабораторная работа 4-5. Определение последствий природных катастроф. Дешифрирование снимков.

Лабораторная работа 6-7. Дешифрирование космического снимка и оценка экологического состояния на заданной территории.

4.2. Аэрометоды дистанционных исследований

Лекции. История развития аэрометодов. Преимущества и недостатки. Характеристика различных методов (фотосъёмка, съёмка в ИК-диапазоне, радиолокация, магнитометрия, гравиметрия, гамма-спектрометрическая и радиометрическая съёмки, аэрозольные и газовые съёмки и др.). Основные решаемые задачи, методика, масштабы работ.

Лабораторная работа 8-9 . Определение границ водных поверхностей на космических снимках.

4.3. Наземные системы дистанционных исследований

Лекции. Основные виды наземных ДМИ и их характеристика (фотографические, геофизические, телевизионные, лидарные и др.). Решаемые задачи, методика, преимущества и недостатки. Нетрадиционные методы ДИ. Возможности различных фирм и научных центров г. Томска и ТПУ в организации и проведении наземных дистанционных исследований и мониторинга.

Лабораторная работа 10-11. Оценка антропогенного влияния на окружающую среду по данным дистанционного зондирования земли.

Раздел 5. Комплексирование ДМИ

Лекции. Рациональное комплексирование ДМИ на различных стадиях геоэкологических и геологичесих работ, при организации различных видов экологического мониторинга. Возможности и высокие перспективы использования ГИС-технологий при ДМИ. Примеры.

Лабораторная работа 12. Дешифрирование и сравнение космоснимков с районов экологических катастроф

Лабораторная работа 13. Защита рефератов

Закрепление теоретического материала при проведении практических работ с использованием картографического материала, атласов, специальной литературы, выполнение проблемно-ориентированных индивидуальных заданий.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов (CРC)

6.1 Текущая СРС направлена на углубление и закрепление знаний, а также на развитие практических умений.

Текущая СРС включает следующие виды работ:

Работа студентов с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме;

Изучение тем, вынесенных на самостоятельную проработку;

Изучение теоретического материала к лабораторным занятиям;

Подготовке к зачету.

6.2 Творческая проблемно-ориентированная самостоятельная работа (ТСР) направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала бакалавров и заключается в поиске, анализе и презентации материалов по заданным темам рефератов.

6.2.1. Перечень тем для самостоятельной работы (рефераты, КР):

1. Современные активные методы ДИ, их преимущества и недостатки.

2. Использование ДМИ при оценке состояния и мониторинге ОС урбанизированных территорий.

3. Электромагнитное излучение Солнца и его использование при ДМИ.

4. Современные ДМИ атмосферы (решаемые экологические задачи, технические характеристики, методика).

5. Характеристики космических носителей и орбит с позиции их использования для ДМИ ОС.

6. Комплексирование ДМИ в решении задач горно-геологического мониторинга.

7. Современные аэрометоды дистанционных исследований.

8. Важнейшие характеристики растительности, используемые при ДМИ.

9. Наземные системы дистанционных исследований ОС.

10. Методы гамма-спектрометрии в геоэкологии.

11. Доступ потребителей к космической информации ДЗ Земли.

12. Важнейшие характеристики почв, используемые при ДМИ.

13. История развития и современное состояние ДМИ.

14. Развитие и состояние ДМИ в Западно-Сибирском регионе и в г. Томске.

15. Взаимодействие ЭМИ с атмосферой.

16. Основные характеристики горных пород, изучаемые ДМИ.

17. Основные характеристики почв, изучаемые ДМИ.

18. Основные характеристики растительности, изучаемые ДМИ.

19. Основные характеристики вод озёр, рек, морских побережий, изучаемые ДМИ.

20. Методы съёмки при ДМИ.

21. Фотографические методы и их использование при геологических и экологических исследованиях.

22. Телевизионные методы ДЗ и их использование при геологических и экологических исследованиях.

23. Сканерные методы ДЗ и их использование при геологических и экологических исследованиях.

24. Гамма-спектрометрические методы ДЗ и их использование при геологических и экологических исследованиях.

25. Радиолокационные методы ДЗ и их использование при геологических и экологических исследованиях.

26. Лидарные методы ДЗ и их использование при геологических и экологических исследованиях.

27. Методы ИК-съёмки и их использование при геологических и экологических исследованиях.

28. Голографические методы ДЗЗ.

29. Современные космические системы ДЗЗ.

30. Аэрометоды ДЗЗ.

31. Наземные методы дистанционных исследований.

32. Нетрадиционные виды ДЗ.

33. ДМИ в решении геологических задач (картирование, прогнозирование и поиски МПИ по видам).

34. Обработка результатов ДЗЗ с применением современных технологий.

35. Получение данных ДЗЗ (в том, числе характеристика наземных станций приема).

36. ДМИ в нефтегазовой отрасли.

37. ДМИ в решении конкретных геоэкологических задач.

38. ДМИ в мониторинге ОС.

Кроме того, допускаются свободные темы по конкретным регионам и районам.

· Определение последствий природных катастроф (по данным ДЗ): последствия цунами, шторма, наводнения и т. д.

· Мониторинг изменения береговой линии Аральского моря по данным ДЗ.

· Использование данных ДЗ при проведении геоэкологических исследований в районе месторождения Самотлор.

· Дистанционное зондирование при мониторинге урбанизированных территорий (город…).

· Использование данных ДЗ при проведении мониторинга территории…., загрязненной в результате ….

По итогам работы представляется письменный отчёт в форме курсовой работы и презентация в электронном виде, делается устное сообщение перед студентами группы.

Основные разделы: введение, основная часть (с главами по теме работы), заключение, список литературы, включающий не менее трёх источников (20010 – 2012 года).

6.3 Контроль самостоятельной работы

Оценка результатов самостоятельной работы осуществляется в виде двух форм: самоконтроль и контроль со стороны преподавателя.

7. Средства текущей и итоговой оценки качества освоения дисциплины (фонд оценочных средств)

Контроль знаний студентов по дисциплине осуществляется по 2 видам: текущий и итоговый.

Текущий контроль приучает студентов к систематической работе по изучаемой дисциплине и позволяет определить уровень усвоения студентами теоретического материала. Он осуществляется в виде контрольных и проверочных работ, тестовых опросов. Оценка знаний при текущем контроле осуществляется в соответствии с рейтинг - планом по дисциплине.

Итоговый контроль – в соответствии с учебным планом:

5 семестр – зачет

1. Дайте определение понятия «Дистанционное зондирование»?

2. Что понимается под спектром ЭМИ?

3. Основные спектральные диапазоны ЭМИ, используемые в ДМИ.

4. Относятся ли геофизические методы к ДМИ?

5. Какие научные открытия и достижения лежат в основе ДМИ?

6. Главные этапы в развитии ДМИ.

7. В чём заключается роль в развитии ДМИ?

8. Когда и в каких целях в России началось использование аэросъёмки?

9. Когда и в каких целях в России началось широкое использование аэрогаммасъёмки?

10. В каких организациях г. Томска разрабатывают и применяют ДМИ?

11. Возможно ли, на обычной фотографии увидеть объект или явление не видимое «невооружённым» глазом?

12. Почему человеческий глаз видит в диапазоне 0,4 – 0,78 мкм?

13. Почему летучая мышь «видит» в другом диапазоне, нежели человек?

14. Что такое пассивные методы и какие ДМИ к ним относятся?

15. Что такое активные методы и какие ДМИ к ним относятся?

16. Какова роль Солнца в ДМИ?

17. Какие человеческие органы используются при ДМИ?

18. Чем обусловлено появление полос поглощения в спектре ЭМИ Солнца, поступающего на поверхность Земли?

19. Влияние атмосферного озона на ЭМИ Солнца?

20. Насколько атмосфера прозрачна для теплового излучения?

21. Что такое эмиттерная энергия и её значение для ДМИ?

22. Факторы, определяющие возникновение «теплового парника» в атмосфере?

23. В каких диапазонах спектра ЭМИ атмосфера Земли «прозрачна»?

24. Предпочтительная высота Солнца при аэрокосмических съёмках?

25. В каких случаях при ДМИ используется низкое стояние Солнца?

26. Почему использование светофильтров позволяет получить более качественный снимок?

27. Что такое эмиссия и её роль для ДМИ?

28. Что понимается под «независимыми» параметрами ДЗ?

29. Что понимается под «зависимыми» параметрами ДЗ?

30. Какие характеристики горных пород изучаются ДМИ?

31. Какие характеристики почв изучаются ДМИ?

32. Какие характеристики растительности изучаются ДМИ?

33. Какие характеристики вод озёр, рек, морей изучаются ДМИ?

34. При какой съёмке чётко видны границы воды и суши?

35. Основные типы космических носителей аппаратуры ДЗЗ?

36. Типы космических орбит и их использование для ДМИ?

37. Решаемые задачи ДМИ в зависимости от высоты космических орбит.

38. Виды измерений и наблюдений из космоса, решаемые задачи.

39. Техника и методика космофотосъёмки, решаемые задачи.

40. Техника и методика сканерной космосъёмки, решаемые задачи.

41. Техника и методика радиолокационной съёмки, решаемые задачи.

42. Техника и методика ИК-съёмки, решаемые задачи.

43. Техника и методика лидарной съёмки, решаемые задачи.

44. Современные виды космических систем исследования ОС.

45. Система изучения природных ресурсов на базе «Ресурс-О».

46. Как оперативно получить и (или) заказать данные ДЗЗ?

47. Опыт и перспективы использования ППС.

48. Требования, предъявляемые к ППС.

49. Основные виды аэрометодов и решаемые экологические задачи.

50. Основные положения методики аэрогаммасъёмки и решаемые задачи.

51. Виды наземных систем исследования ОС, решаемые задачи.

52. Современные ДМИ в прогнозно-поисковых геологических работах.

53. Современные ДМИ в изучении природных ресурсов.

54. Современные ДМИ в оценке состояния и мониторинге ОС.

55. Современные ДМИ в геоэкологическом картировании.

7.3. Примеры вопросов для экзамена

1. Развитие и состояние ДМИ в России. Основные факторы взаимодействия ЭМИ с веществами и средами на поверхности Земли.

2. Развитие и состояние ДМИ в Западно-Сибирском регионе и в г. Томске. Основные современные методы наблюдений и измерений при ДЗЗ из космоса.

3. Современные космические системы исследования ОС. Излучение солнца и его использование при ДМИ.

4. Современные фотографические методы исследования ОС и их использование для решения экологических задач.

Важнейшие характеристики вод, используемые при ДМИ.

5. Современные наземные мобильные методы и средства дистанционных исследований и мониторинга ОС. Активные и пассивные ДМИ, преимущества и недостатки.

8. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

1. Антыпко дистанционного теплового мониторинга геологической среды городских агломераций . – М.: Недра, 1992. – 15 с.

2. , Шевченко картирование на основе космической информации. – М.: Недра, 1988. – 221 с.

3. , Гершензон системы дистанционного зондирования Земли. – М.: Изд-во А и Б, 1997. – 269 с.

4. Гонин съёмки Земли. – Л.: Недра, 1989. – 255 с.

5. Кабанов мониторинг атмосферы. Ч.1. Научно-методические основы: Монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1997. – 211 с.

6. Киенко в космическое природоведение и картографирование: Учебник для Вузов. - М.: Картгеоцентр – Геоиздат, 1994. –212 с.

7. , Фридман гамма-спектрометрии природных сред. – 3 изд., перераб. и дол. – М.: Энергоатомиздат, 1991. – 232 с.

8. // Исследование Земли из космоса. 2004. №2. С.61-96.

9. Кронберг П. Дистанционное изучение Земли: основы и методы дистанционных исследований в геологии (перевод с немецкого). – М.: Мир, 1988. – 343 с.

10. , Корчуганова методы в геологии. – М.: Недра, 1993. – 224 с.

11. , Архангельский методы исследования окружающей среды: Учебное пособие для Вузов. – Томск: Изд-во STT, 200. – 184 с.

12. Поцелуев методы геологических исследований: история, современное состояние / , // Т. 1: Полезные ископаемые. - , 2008. - С. 513-518.

13. Протасевич методы обнаружения радиоактивных выбросов в атмосферу: Конспект лекций / ; Томский политехнический университет. - Томск: Изд-во ТПУ, 1997. - 36 с.

14. Региональный мониторинг атмосферы. Ч. II. Новые приборы и методики измерений: Коллективная монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1997. – 295с.

15. Рис дистанционного зондирования: пер. с англ. / ; пер. , . - М.: Техносфера, 2006.

17. Региональный мониторинг атмосферы. Ч. III. Уникальные измерительные комплексы: Коллективная монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1998. – 238с.

18. Чандра зондирование и географические информационные системы : пер. с англ. / , . - М.: Техносфера, 2008. - 312 с.

19. , Молодчинин состояния окружающей среды тепловой аэросъёмкой. – М.: Недра, 1992. – 64 с.

Дополнительная литература

1. Альбом - СССР из космоса. – М.: ГУК и К при СМ СССР, 1982.

2. Альбом – Дешифрирования многозональных аэрокосмических снимков (методики и результаты). – ГДР. – М.: Наука, 1982.

3. Аэрогеофизические методы прогнозирования месторождений урана/ Под. ред. . – М.: Атомиздат, 1980. – 129 с.

4. Виноградов мониторинг экосистем. – М.: Наука, 1984. – 152 с.

5. Гарбук системы дистанционного зондирования Земли: Монография / , . - М.: Изд-во А и Б, 1997. - 296 с.

6. , Дмитриевский -аэрокосмическое изучение нефтегазоносных территорий. – М.: Наука, 1994. – 288 с.

7. Дистанционные исследования при поисках полезных ископаемых. – Новосибирск: Наука, 1986. – 175 с.

8. Дистанционные исследования при нефтегазопоисковых работах. – М.: Наука, 1988. – 224 с.

9. , Красильникова природных условий и ресурсов. – М.: Недра, 1988. – 299 с.

10. , Полетаев космической геологии. – М.: Недра, 1988. – 235 с.

11. Космическая информация в геологии / Под ред. и др. – М.: Наука, 1983. – 536 с.

12. Мелух исследования с использованием космических средств / Под ред. . Серия: Охрана природы и воспроизводство природных ресурсов. – М.: ВИНИТИ, 1988. – Т. 21. – 184 с.

13. Михайлов аппаратура дистанционного зондирования Земли / , . - М.: Вузовская книга, 2008. - 340 с.

14. и др. Основы дистанционных методов мониторинга загрязнения природной среды. – Л.: Гидрометеоиздат, 19с.

15. , Архангельский методы исследования окружающей среды: Учебное пособие / Томский политехнический университет.-Томск: STT, 2001.-184 c.:

16. Природа Земли из космоса: изучение природных ресурсов Земли с помощью данных, передаваемых со спутников по радиолокации / Под ред. . – Л.: Гидрометеоиздат, 1984. – 152 с.

Интернет-ресурсы

http://www. *****/ru/index. html

http://www. *****/distzond. html

http://www. *****/

http://www. /photos/digitalglobe-imagery/

http://*****/index. php? r=18&id=6793

http://www. pryroda. /index. php? newsid=1000384

9. Материально-техническое обеспечение дисциплины

При изучении основных разделов дисциплины, выполнении практических работ студенты используют разнообразный картографический материал, включающий атласы России, Мира, комплект космо - и аэрофотоснимков, как в печатном издании, так и в электронном виде.

Программа составлена на основе ФГОС ВПО по направлению подготовки 022000 «Экология и природопользование».

Программа одобрена на заседании кафедры ГЭГХ ИПР

(протокол № ____ от «___» _______ 2011 г.).

Учебное издание

дистанционные методы исследований

Рабочая программа для студентов, обучающихся по направлению 022000 Экология и природопользование по профилю «геоэкология»

Разработчики

Современный мир не перестает удивлять нас новыми открытиями и достижениями. В наши дни человек владеет колоссальными знаниями. Область его интересов и деятельность ограничиваются не только Землей, а выходят и за ее пределы.

Наука и технологии служат человеку в первую очередь для улучшения качества его жизни и становятся теми средствами, с помощью которых можно находить более эффективные способы решения экономических, экологических и социальных проблем.

Сегодня все более активно используются данные о нашей планете, получаемые с искусственных спутников и пилотируемых космических аппаратов. Они называются данными дистанционного (удаленного) зондирования. Этот широко применяемый в наши дни термин - синоним словосочетаний «изображение Земли из космоса» и «космические снимки Земли». К основным достоинствам дистанционного зондирования можно отнести возможность мониторинга (от лат. monitor - тот, кто предупреждает) или регулярных наблюдений за динамикой географических процессов.

Дистанционные методы исследования окружающей среды были известны еще в древнем Риме. В XVIII в. люди научились получать первые снимки-рисунки различных объектов с помощью фотокамеры - камеры-обскуры (от лат. camera - комната и obscura - темная). С развитием фотографии появилась возможность моментально получать детальные и точные снимки. Сначала проводилась фотосъемка местности (с воздушных шаров и воздушных змеев, позднее - с аэростатов и аэропланов). Первый космический снимок Земли был сделан в I960 г.

За последние годы развитие компьютерных технологий и ГИС привели к тому, что данные спутникового мониторинга нашли применение в самых разных областях - от сельского хозяйства до геоэкологии. Это позволило оперативно реагировать на малейшие изменения в окружающей среде и предупреждать опасные явления и процессы.

Одно из известных вам направлений использования космических снимков - метеорология. Изучение - одна из самых сложных научно-практических задач. Возможности дистанционных методов зондирования позволили вести наблюдение за на обширных пространствах в режиме реального времени и отслеживать формирование (определять тип и мощность облачности, получать ее стереоскопическое изображение, измерять температуру и т.д.). Слежение за формированием и передвижением позволило заранее прогнозировать опасные для человека явления природы (ураганы, смерчи, торнадо) и тем самым предупреждать их тяжелые последствия.

Космическая съемка незаменима при составлении метеопрогнозов, прогнозировании опасных атмосферных явлений, при исследовании Земли. Она позволяет определять местоположение локальных источников загрязнения (теплоэлектростанций, целлюлозно-бумажных комбинатов и др.) и вести наблюдение за экологической ситуацией в районах захоронения токсичных отходов.

Важное практическое направление использования космоснимков - учет природных ресурсов. Дистанционное зондирование значительно упростило оценку их запасов, особенно в труднодоступных районах. Так, при изучении стало проще производить подсчет площадей лесов, определять тип лесонасаждений и возраст деревьев, доминирующие породы и объем биомассы. Упростились не только картографирование лесных массивов, но и контроль за их сохранностью, включая контроль за рубками, границами водоохранных зон и т.п.

Спутниковые данные помогают раннему (оперативному) обнаружению пожаров. Известно, что при площади очага пожара менее 5 га его ликвидация осуществляется десантом всего из 4-б человек, то есть относительно легко и быстро.

Природные стихийные бедствия, такие как наводнения, ураганы, землетрясения, торнадо и другие, наносят огромный экономический ущерб и приводят к человеческим жертвам. Поэтому мониторинг чрезвычайных ситуаций очень важен. Использование дистанционных методов зондирования позволяет прогнозировать возникновение чрезвычайных ситуаций, локализировать опасные явления на начальных стадиях развития и значит - уменьшить возможный ущерб.

В настоящее время наземные службы России контролируют 27% площади лесного фонда, 47% - находятся под охраной авиационной лесной службы. Неохраняемая площадь составляет 26%, или около 300 млн га. Над этой площадью контроль осуществляется только при помощи спутниковой съемки. С ее помощью можно выявить вновь возникающие очаги пожара даже под дымовой завесой, а в случае возгорания торфа - даже при отсутствии открытого пламени.

Применение дистанционного зондирования в изучении минеральных ресурсов позволяет исследовать условия залегания горных пород и оценить объемы предполагаемых месторождений. Эффективно использование космических снимков и при поиске нефти, природного газа, угля, решении проблем развития альтернативных источников энергии, таких как геотермальная, энергия солнца и ветра, а также при строительстве и эксплуатации атомных и гидроэлектростанций.

Космические снимки используют для изучения водных и биоресурсов, в частности для определения запасов фитопланктона и рыбного промысла, для исследования ареалов обитания различных видов животных.

Применение космических снимков в сельском хозяйстве позволяет повысить эффективность использования земель, так как они «видят» районы с угнетенной и помогают определить, куда и сколько нужно внести удобрений, где и как часто производить полив, когда можно собирать урожай.

Применение космических снимков для исследования морских акваторий также позволяет решать разнообразные хозяйственные задачи: исследовать ледовую обстановку, осуществлять контроль над рыболовством. Кроме того, они обеспечивают проведение мониторинга температурного режима и солености воды, изучение изменений береговой линии шельфа. Особенно заинтересованы в дистанционном зондировании морских акваторий научно-исследовательские организации и компании, занимающиеся добычей морепродуктов и в шельфовой зоне и обеспечивающие судоходство и навигацию.

Космические снимки позволяют оценить и льда, что вместе с анализом температурных показателей дает возможность прогнозировать скорость таяния снега и предупреждать наводнения. Обнаружение и локализация ледяных , на сибирских реках, например, позволяют избежать резкого подъема уровня воды и связанных с ним бедствий.

Развитие хозяйственной деятельности неразрывно связано с использованием природных ресурсов. Интенсивное их потребление в прошлом веке привело к существенному ухудшению экологической ситуации во многих районах страны. Система спутникового мониторинга помогает своевременно обнаруживать загрязнения водных объектов и почв, воздуха и , мест разрывов нефте- и газопроводов, оценить выбросы загрязняющих веществ промышленными предприятиями и своевременно бороться с проблемами обезлесения и опустынивания.

На сегодняшний день практически не осталось направлений в исследовании Земли, в которых бы не использовались космические снимки. Применение спутникового мониторинга дает возможность управлять территориями, правильно и своевременно принимать решения в случае возникновения чрезвычайной ситуации.

Напомним, что для дешифрирования космического снимка в первую очередь необходимо определить, какое это явление (объект) изображено на снимке и на какой территории. Затем - найти явление (объект) на карте, определить его географическое положение, качественные и количественные характеристики.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт экологии и географии

Кафедра географии и картографии

Реферат

Дистанционные методы исследования Земли

Выполнил студент III курса

группы № 02-106

Ялалов Д.

Научный руководитель:

Денмухаметов Р.Р.

Казань - 2013

Введение

1. Дистанционные методы

2. Возникновение космических методов

3. Аэрофотосъемка

3.1. Возникновение аэрофотосъемки

3.2. Использование аэрофотосъемки в народном хозяйстве

4. Дистанционные исследования при поисках полезных ископаемых

5. Методики автоматизации дешифрирования космических материалов

Заключение

Список использованных источников

Введение

Стремительное развитие космонавтики, успехи в изучение околоземного и межпланетного космического пространства, выявилось весьма высокая эффективность использования околоземного космоса и космических технологий в интересах многих наук о Земле: география, гидрология, геохимия, геология, океанология, геодезия, гидрология, землеведение.

Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного прогнозирования погоды и гидрометеорологической обстановки, для навигации на морских путях и авиационных трассах, для высокоточной геодезии, изучения природных ресурсов Земли и контроля среды обитания становится все более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники в различных областях хозяйства значительно возрастет

1. Дистанционные методы

Дистанционные методы - общее название методов изучения наземных объектов и космических тел неконтактным путём на значительном расстоянии (например, с воздуха или из космоса) различными приборами в разных областях спектра (Рис.1). Дистанционные методы позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире искусственного спутника Земли и съёмки обратной стороны Луны советской автоматической станцией "Зонд-3" (1959).

Рис. 1. Основные геометрические параметры сканирующей системы: - угол обзора; Х и У - линейные элементы сканирования; dx и dy - элементы изменения мгновенного угла зрения; W - направление движения

Различают активные дистанционные методы, основанные на использовании отражённого объектами излучения после облучения их искусственными источниками, и пассивные , которые изучают собственное излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников дистанционные методы подразделяют на наземные (в том числе надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры дистанционные методы различают самолётные, вертолётные, аэростатные, ракетные, спутниковые дистанционные методы (вгеолого-геофизических исследованиях - аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагнитного излучения позволяют распознать объекты и получить информацию об их размере, плотности, химическом составе, физических свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления химического состава горных пород и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растительного покрова, инфракрасная (ИК) - даёт оценки температур поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.

По типу приёмника излучения дистанционные методы подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографические приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют различную чувствительность в разных областях спектра (селективны). Фотоэлектрические приёмники (энергия излучения преобразуется непосредственно в электрический сигнал при помощи фотоумножителей, фотоэлементов и других фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абсолютных энергетических измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в другие виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и других носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и другими системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.

2. Возникновение космических методов

В истории космического фотографирования может быть выделено три этапа. К первому этапу следует отнести фотографирование Земли с высотных, а затем с баллистических ракет, относящееся к 1945--1960 гг. Первые фотография земной поверхности были получены еще в конце XIX в. - начале ХХ в., то есть еще до использования в этих целях авиации. Первые опыты по подъему фотоаппаратов на ракетах начал проводить в 1901--1904 гг. немецкий инженер Альфред Мауль в Дрездене. Первые снимки были получены с высоты 270--800 м, имели размер кадра 40х40 мм. В этом случае фотографирование проводилось при спуске ракеты с фотоаппаратом на парашюте. В 20--30 гг. ХХ в. в ряде стран производились попытки использования ракет для съемки земной поверхности, однако в связи с малыми высотами подъема (10-12 км) они оказались не эффективными.

Съемки Земли с баллистических ракет сыграли важную роль в предыстории изучения природных ресурсов с различных космических летательных аппаратов. С помощью баллистических ракет были получены первые мелкомасштабные изображения Земли с высоты более 90-100 км. Самые первые космические фотографии Земли были сделаны в 1946 г. с помощью баллистической ракеты "Викинг-2" с высоты около 120 км на полигоне Уайт-Сэнд (Нью-Мексико, США). В течение 1946--1958 гг. на этом полигоне производились запуски баллистических ракет в вертикальном направлении и после достижения максимальной высоты (около 400 км) происходило их падение на Землю. На траектории падения осуществлялось получение фотографических изображений земной поверхности в масштабе 1:50 000 - 1:100 000. В 1951--1956 гг. на советских метеорологических ракетах также стала устанавливаться фотоаппаратура. Снимки выполнялись при спуске на парашюте головной части ракеты. В 1957--1959 гг. для съемок в автоматическом режиме использовались геофизические ракеты. В 1959--1960 гг. на высотных стабилизированных в полете оптических станциях были установлены фотографические камеры кругового обзора, с помощью которых были получены фотографии Земли с высоты 100-120 км. Фотографирование производилось в разные стороны, в разное время года, в разные часы дня. Это позволило проследить сезонные изменения космического изображения природных особенностей Земли. Снимки, полученные с баллистических ракет, были весьма несовершенны: были большие расхождения в масштабе изображения, малая площадь, нерегулярность запусков ракет. Но эти работы были необходимы для отработки техники и методики съемок земной поверхности с искусственных спутников Земли и пилотируемых кораблей.

Второй этап фотографирования Земли из Космоса охватывает период с 1961 по 1972 г. и носит название экспериментального. 12 апреля 1961 г. первый космонавт СССР (России) Ю. А. Гагарин впервые вел визуальное наблюдение Земли через иллюминаторы корабля "Восток". 6 августа 1961 г. космонавт Г. С. Титов на корабле "Восток-2" выполнял наблюдение и съемку земной поверхности. Съемка производилась через иллюминаторы отдельными сеансами на протяжении всего полета. Уникальную научную ценность имеют исследования, выполненные в этот период на космических пилотируемых кораблях серии "Союз". С борта корабля "Союз-3" проводилось фотографирование дневного и сумеречного горизонта Земли, земной поверхности, а также наблюдение тайфунов, циклонов, лесных пожаров. С борта корабля "Союз-4" и "Союз-5" велись визуальные наблюдения за земной поверхностью, фото- и киносъемка, в том числе районов Каспийского моря. Эксперименты большого хозяйственного значения были выполнены по совместной программе научно-исследовательским судном "Академик Ширшов", спутником "Метеор" и пилотируемым космическим кораблем "Союз-9". Программой исследований в этом случае было предусмотрено наблюдение Земли с использованием оптических приборов, фотографирование геолого-географичеких объектов с целью составления геологических карт и возможных районов залегания полезных ископаемых, наблюдение и фотографирование атмосферных образований с целью составления метеорологических прогнозов. В этот же период была проведена радиолокационная и тепловая съемка Земли и экспериментальное фотографирование в разных зонах видимого солнечного спектра, позднее названного многозональным фотографированием.

3. Аэрофотосъемка

Аэрофотосъемка - это фотографирование земной поверхности с самолета или вертолета. Оно производится вертикально вниз или наклонно к плоскости горизонта. В первом случае получаются плановые снимки, во втором - перспективные. Чтобы иметь изображение обширного района, делается серия аэрофотоснимков, а затем они монтируются вместе. Снимки делаются с перекрытием, чтобы один и тот же участок попал на соседние кадры. Два кадра составляют стереопару. Когда мы рассматриваем их в стереоскоп, изображение выглядит объемным. Аэрофотосъемка производится с использованием светофильтров. Это позволяет видеть особенности природы, которые не заметишь невооруженным глазом. Если произвести съемку в инфракрасных лучах, то можно увидеть не только земную поверхность, но и некоторые черты геологического строения, условия залегания грунтовых вод.

Аэрофотосъемка широко используется для изучения ландшафтов. С ее помощью составляются точные топографические карты без проведения многочисленных трудных съемок местности на поверхности Земли. Она помогает археологам находить следы древних цивилизаций. Открытие в Италии погребенного этрусского города Спины было осуществлено с помощью аэрофотосъемок. Об этом городе упоминали географы прошлых лет, но найти его никак не удавалось, пока в болотистой дельте реки По не стали проводить осушительные работы. Мелиораторы использовали аэрофотоснимки. Некоторые из них привлекли внимание ученых-специалистов. На этих снимках была запечатлена плоская поверхность низины. Так вот, на снимках этой местности просматривались контуры каких-то правильных геометрических фигур. Когда начали раскопки, стало ясно, что здесь процветал некогда богатый портовый город Спина. Аэрофотоснимки позволили по неприметным с земли изменениям растительности, заболоченности увидеть расположение его домов, каналов, улиц.

Большую помощь аэроснимки оказывают геологам, помогая прослеживать простирание горных пород, рассматривать геологические структуры, обнаруживать выходы коренных пород на поверхность.

В наше время в одних и тех же районах аэрофотосъемка многократно проводится в течение долгих лет. Если сравнить полученные снимки, можно определить характер и масштабы изменений природной обстановки. Аэрофотосъемка помогает регистрировать степень воздействия человека на природу. Повторные снимки показывают участки нерационального природопользования, и на основе этих снимков планируются мероприятия по охране природы.

3.1 Возникновение аэрофотосъемки

Возникновение аэрофотосъемки относится к концу XIX в. Первые фотографии земной поверхности были сделаны с воздушных шаров. Хотя они отличались множеством недостатков, сложностью получения и последующей обработки, изображение на них было достаточно четким, что позволяло различить множество деталей, а также получить общую картину исследуемого региона. Дальнейшее развитие и совершенствование фотографии, фотоаппаратов а также воздухоплавания привели к тому, что съемочные устройства стали устанавливать на летающих аппаратах, называемых аэропланами. Во время Первой мировой войны фотографирование с аэропланов производилось с целью воздушной разведки. Фотографировались расположение войск противника, их укрепления, количество техники. Эти данные использовались для разработки оперативных планов ведения боевых действий.

После окончания Первой мировой войны, уже в послереволюционной России, аэрофотосъемку стали использовать для нужд народного хозяйства.

3.2 Использование аэрофотосъемки в народном хозяйстве

В 1924 г. под г. Можайск был создан аэрофотосъемочный полигон, на котором производилось испытание вновь создаваемых аэрофотоаппаратов, аэрофотосъемочных материалов (фотопленки, специальной бумаги, оборудования для проявления и печатания снимков). Эту аппаратуру устанавливали на существовавшие тогда самолеты типа Як, Ил, новый самолет Ан. Эти исследования давали положительные результаты, что и позволило перейти к широкому использованию аэрофотосъемки в народном хозяйстве. Аэрофотографирование производилось с помощью специального фотоаппарата, который устанавливался в днище самолета с приспособлениями, устраняющими вибрацию. Кассета фотоаппарата имела пленку длиной от 35 до 60 м и шириной 18 или 30 см, отдельный снимок имел размеры 18х18 см, реже - 30х30 см. До 50-х гг. ХХ в. изображение на снимках было черно-белым, позже стали получать цветные, а затем спектральные изображения.

Спектральные изображения выполняются с помощью светофильтра в определенной части видимого солнечного спектра. Например, возможно фотографирование в красной, синей, зеленой, желтой части спектра. При этом используется двухслойная эмульсия, покрывающая пленку. Такой способ фотографирования передает ландшафт в необходимых цветах. Так, например, смешанный лес при спектральном фотографировании дает изображение, которое легко можно подразделять по породам, имеющим на снимке разные цвета. После проявления и сушки пленки готовят контактные отпечатки на фотобумаге размером соответственно 18х18 см или 30х30 см. Каждый снимок имеет номер, круглый уровень, по которому можно судить о степени горизонтальности снимка, а также часы, фиксирующие время в момент получения данного снимка.

Фотографирование какой-либо местности осуществляется в полете, при котором самолет совершает перелеты с запада на восток, затем с востока на запад. Аэрофотоаппарат работает в автоматическом режиме и выполняет снимки, располагающиеся по маршруту самолета один за другим, перекрывая друг друга на 60 %. Перекрытие снимков между маршрутами составляет 30 %. В 70-х гг. ХХ в. на базе самолета Ан был сконструирован для этих целей специальный самолет Ан-30. Он снабжен пятью фотоаппаратами, управление которыми осуществляется с помощью счетной машины, а в настоящее время - с помощью компьютера. Кроме того, самолет обеспечен противовибрационным устройством, исключающим боковой снос за счет ветра. Он может выдерживать заданную высоту полета. Первые опыты использования аэрофотосъемки в народном хозяйстве относятся к концу 20-х гг. ХХ в. Снимки были использованы в труднодоступных местах в бассейне реки Мологи. С их помощью производилось изучение, обследование и определение качества и продуктивности (таксация) лесов этой территории. Кроме того, немного позже производилось изучение фарватера Волги. Эта река на некоторых участках часто меняла фарватер, возникали мели, косы, пересыпи, сильно мешающие судоходству до создания водохранилищ.

Аэрофотосъемочные материалы позволили выявить закономерности в образовании и отложении речных наносов. Во время Второй мировой войны аэрофотосъемка также широко использовалась в народном хозяйстве для разведки полезных ископаемых, а также на фронте для выявления перемещения живой силы и техники противника, съемки укреплений, возможных театров военных действий. В послевоенный период аэрофотосъемка также использовалась во многих направлениях.

4. Дистанционные исследования при поисках полез ных ископаемых

Так, для обеспечения разведки месторождений углеводородного сырья, проектирования, строительства и эксплуатации объектов добычи, переработки и транспортировки нефти и газа с использованием аэрокосмической информации производят изучение рельефа, растительности, почв и грунтов, их состояния в разные времена года, в том числе в экстремальных природных условиях, например, при наводнениях, засухах или сильных морозах, анализ наличия и состояния селитебной и транспортной инфраструктуры, изменений компонентов ландшафтов в результате хозяйственного освоения территории, в том числе в результате аварий на нефтяных и газовых промыслах и трубопроводах и т.д.

При необходимости применяют цифрирование, фотограмметрическую и фотометрическую обработку изображений, их геометрическую коррекцию, масштабирование, квантование, контрастирование и фильтрацию, синтезирование цветных изображений, в том числе с использованием различных фильтров и т.д.

Подбор аэрокосмических материалов и дешифрирование изображений производятся с учетом времени суток и сезона проведения съемки, влияния метеорологических и иных факторов на параметры изображения, маскирующего действия облачности, аэрозольного загрязнения.

Для того, чтобы расширить возможности анализа аэрокосмической информации, используются не только прямые дешифровочные признаки, априорно известные или выявляемые в процессе целенаправленного исследования аэрокосмических изображений, но и косвенные признаки, широко используемые при визуальном дешифрировании. Они, прежде всего, основаны на индикационных свойствах рельефа, растительности, поверхностных вод, почв и грунтов.

Различные результаты наблюдаются при съемке одних и тех же объектов в разных зонах спектра. Например, съемки в инфракрасном и радиотепловом диапазонах лучше фиксируют температуру и влажность земной поверхности, наличие на водной поверхности нефтяной пленки, но точность результатов такой съемки может быть перечеркнута сильным влиянием физической неоднородности поверхности суши или волнения на водной поверхности.

5. Методики автоматизации дешифрирования космических материалов

Специфика использования материалов космических съемок связана с целевым подходом к дешифрированию дистанционных материалов, которые содержат информацию о многих территориально связанных параметрах (географических, сельскохозяйственных, геологических, техногенных и т.п.) природной среды. В основу компьютерного визуального дешифрирования положены измерения четырехмерных (две пространственных координаты, яркостная и временная) и пятимерных (дополнительно, цветное изображение при многозональной съемке) распределений радиационных потоков, отражаемых элементами и объектами местности. Тематическая обработка изображения включает в себя логические и арифметические операции, классификации, фильтрацию и/или линеаментный анализ и серию других методических приемов. Сюда же следует отнести визуальное дешифрирование изображения на экране компьютера, которое осуществляется с помощью стереоэффекта, а также и всего арсенала средств компьютерной обработки и преобразования изображений. Широкие возможности для исследователя открывают автоматические классификации многозональных изображений (с предварительным обучением на эталонах или с задаваемыми параметрами). Классификации основаны на том, что различные природные объекты имеют в разных диапазонах электромагнитного спектра отличающиеся друг от друга яркости. Анализ яркостей объектов в разных зонах (СОХ - спектральные оптические характеристики) позволяет идентифицировать и оконтурить представительные виды ландшафта, структурно-вещественные (производственные и социальные) комплексы и конкретные геологические и техногенные тела. Технология обновления по космическим снимкам цифровых топографических карт на основе визуального дешифрирования должна обеспечивать следующую совокупность функций:

1) экспорт/импорт цифровой картографической информации и цифровых изображений местности;

2) дешифрирование космических фотоснимков с соблюдением оптимальных условий их обработки:

Подготовка исходных материалов для идентификации элементов местности на увеличенных позитивах (на пленке);

Оценка разрешения снимков до и после первичной обработки;

Определение прямых и косвенных дешифровочных признаков, а также использование фотообразов типовых элементов местности и справочных материалов;

4) оцифровку космических снимков и результатов дешифрирования;

5) трансформирование (ортотрансформирование) цифровых космических снимков;

6) подготовку статистических и иных характеристик информационных признаков элементов местности;

7) редактирование элементов содержания цифровой карты по результатам дешифрирования снимков;

8) формирование обновленной цифровой топографической карты;

9) оформление цифровой топографической или тематической карты для пользователя совместно со снимком - создание композитной цифровой фототопографической карты.

При автоматическом и интерактивном дешифрировании дополнительно возможно моделирование полей сигналов на входе приемной аппаратуры аэрокосмических систем мониторинга окружающей среды; фильтрация изображения и операции распознавания образов.

Но совместное наблюдение на экране слоя, получение которого возможно различными методами, векторной цифровой карты и растрового снимка создают новые, ранее не использованные, возможности для автоматизированного дешифрирования и обновления карт.

Координаты контура площадного или линейного элемента местности на цифровой карте могут служить "песмейкером" - указателем для снятия данных с пикселов растрового изображения местности с последующим вычислением осреднённых характеристик окрестной области, задаваемых размеров, и оконтуриванием площади или нанесением соответствующей кривой в новом слое. При нестыковке параметров растра в очередном пикселе изображения возможен переход на следующий соответствующий тому же элементу на карте и с последующей интерактивной ликвидацией разрывов. Возможен алгоритм прерывного получения статистических характеристик осреднённых окрестностей пикселов (точек отрезков между экстремумами или на сплайнах) с учетом допустимого изменения характеристик растротона, а не всего массива равноотстоящих пробных областей вдоль кривой.

Использование данных карты о рельефе местности позволяет значительно усилить автоматизацию алгоритмов дешифрирования, особенно для гидрологических и геологических массивов информации по прямым признакам, используя тот же приём сопоставления, на базе геологических и гравитационных отношений.

Заключение

Применение аэрокосмических технологий в дистанционном зондировании является одним из наиболее перспективных путей развития этого направления. Конечно, как и любые методы исследования аэрокосмическое зондирование имеет свои достоинства и недостатки.

Одним из основных недостатков этого метода является его относительная дороговизна и на сегодняшний день недостаточная четкость получаемых данных.

Выше перечисленные недостатки являются устранимыми и малозначимыми на фоне тех возможностей, которые открываются благодаря аэрокосмическим технологиям. Это возможность наблюдать обширные территории на протяжении длительного времени, получение динамической картинки, рассмотрение влияние различных факторов на территорию и их взаимосвязь между собой. Это открывает возможность системного изучения Земли и ее отдельных районов.

аэрофотосъемка земная дистанционные космические

Список использованных источников

1. С.В. Гарбук, В.Е. Гершензон «Космические системы дистанционного зондирования Земли», «Скан-Экс», Москва 1997г., 296 стр.

2. Виноградов Б. В. Космические методы изучения природной среды. М., 1976.

3. Методики автоматизации дешифрирования космических материалов - http://hronoinfotropos.narod.ru/articles/dzeprognos.htm

4. Дистанционные методы изучения земной поверхности-http://ib.komisc.ru

5. Аэрокосмические методы. Фотосъемки - http://referatplus.ru/geografi

Размещено на Allbest.ru

Подобные документы

    дипломная работа , добавлен 15.02.2017

    Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.

    презентация , добавлен 19.02.2011

    Геология как наука, объекты исследований и ее научные направления. Геологические процессы, формирующие рельеф земной поверхности. Месторождение полезных ископаемых, классификация их по применению в народном хозяйстве. Руды черных и легированных металлов.

    контрольная работа , добавлен 20.01.2011

    Гидрогеологические исследования при поисках, разведке и разработке месторождений твердых полезных ископаемых: задачи и геотехнологические методы. Сущность и применение подземного выщелачивания металлов, выплавки серы, скважинной гидродобычи рыхлых руд.

    реферат , добавлен 07.02.2012

    Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация , добавлен 19.10.2014

    Аэросъемка и космическая съемка - получение изображений земной поверхности с летательных аппаратов. Схема получения первичной информации. Влияние атмосферы на электромагнитное излучение при съемках. Оптические свойства объектов земной поверхности.

    презентация , добавлен 19.02.2011

    Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.

    реферат , добавлен 10.09.2014

    Этапы разработка пластов полезных ископаемых. Определение ожидаемых величин сдвижений и деформаций земной поверхности в направлении вкрест простирания пласта. Вывод о характере мульды сдвижения и необходимости применения конструктивных мероприятий.

    практическая работа , добавлен 20.12.2015

    Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.

    презентация , добавлен 19.12.2013

    Метод геологических блоков и параллельных разрезов подсчета запасов ископаемых. Преимущества и недостатки рассматриваемых методов. Применение различных методов по оценке эксплуатационных запасов подземных вод. Определение расхода подземного потока.

Дистанционного зондирования мйтоды (a. remote sensing, distances methods; н. Fernerkundung; ф. teledetection; и. metodos a distancia ), - общее название методов изучения наземных объектов и космич. тел неконтактным путём на значит. расстоянии (напр., с воздуха или из космоса) разл. приборами в разных областях спектра. Д. м. позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире ИСЗ и съёмки обратной стороны Луны сов. автоматич. станцией "Зонд-3" (1959).
Различают активные Д. м., основанные на использовании отражённого объектами излучения после облучения их искусств. источниками, и пассивные, к-рые изучают собств. излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников Д. м. подразделяют на наземные (в т.ч. надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры Д. м. различают самолётные, вертолётные, аэростатные, ракетные, спутниковые Д. м. (в геол.-геофиз. исследованиях - аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагн. излучения позволяют распознать объекты и получить информацию об их размере, плотности, хим. составе, физ. свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления хим. состава г. п. и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растит, покрова, ИК - даёт оценки темп-р поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.
По типу приёмника излучения Д. м. подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографич. приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют разл. чувствительность в разных областях спектра (селективны). Фотоэлектрич. приёмники (энергия излучения преобразуется непосредственно в электрич. сигнал при помощи фотоумножителей, фотоэлементов и др. фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абс. энергетич. измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в др. виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и др. носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и др. системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.


Наиболее полные и достоверные сведения об изучаемых объектах даёт многоканальная съёмка - одновременные наблюдения в нескольких диапазонах спектра (напр., в видимом, ИК и радиообласти) или радиолокация в сочетании с методом съёмки более высокого разрешения.
В геологии Д. м. используются для изучения рельефа, строения земной коры, магнитных и гравитац. полей Земли, разработки теоретич. принципов автоматизир. систем космофотогеол. картирования, поиска и прогнозирования м-ний п. и.; исследования глобальных особенностей геол. объектов и явлений, получения предварит, данных о поверхности Луны, Венеры, Марса и др. Развитие Д. м. связано с улучшением наблюдат. базы (спутники-лаборатории, балонные аэростанции и др.) и техн. аппаратуры (внедрение криогенной техники, снижающей уровень помех), формализацией дешифровочного процесса и созданием на этой основе машинных методов обработки информации, дающих макс. объективность оценок и корреляций. Литература : Аэрометоды геологических исследований, Л., 1971; Баррет Э., Куртис Л., Введение в космическое землеведение. Дистанционные методы исследования Земли, пер. с англ., М., 1979; Гонин Г. Б., Космическая фотосъемка для изучения природных ресурсов, Л., 1980; Лаврова Н. П., Стеценко А. Ф., Аэрофотосъемка. Аэрофотосъемочное оборудование, М., 1981; Радиолокационные методы исследования Земли, М., 1980; "Исследование Земли из космоса" (с 1980); Дистанционное зондирование: количественный подход, пер. с англ., М., 1983; Теicholz E., Processing Satellite Data, "Datamation", 1978, v. 24, No 6. К. А. Зыков.

  • - обследования в сельском хозяйстве, совокупность методов сбора, обработки и использования материалов аэро- и космич...

    Сельско-хозяйственный энциклопедический словарь

  • - Рис. 1. Аппарат Ван Слайка для определения щелочного резерва плазмы крови. Рис. 1. Аппарат Ван Слайка для определения щелочного резерва плазмы крови...

    Ветеринарный энциклопедический словарь

  • - в демoграфин, совокупность приёмов изображения закономерностей развития и размещения нас., зависимостей между демографич. процессами и структурами с помощью начертаний. По сравнению с алгебраич...

    Демографический энциклопедический словарь

  • - 1) методы изучения газового состава крови, основанные на принципе физического и химического вытеснения газов крови, поглощении выделяющихся газов химическими реактивами и измерении давления в замкнутой системе до и...

    Большой медицинский словарь

  • - совокупность приемов, позволяющих исследовать и прогнозировать развитие природных объектов путем сопоставления прихода и расхода вещества, энергии и других потоков...

    Экологический словарь

  • - защиты растений, совокупность приемов сокращения численности нежелательных организмов с помощью др. живых существ и биопродуктов...

    Экологический словарь

  • - метод решения краевых задач математической физики, сводящиеся к минимизации функционалов - скалярных переменных величин, зависящих от выбора одной или нескольких функций...

    Энциклопедический словарь по металлургии

  • - способы, приемы, средства обеспечения необходимого управляющего воздействия органов исполнительной власти, органов местного самоуправления, осуществляющих исполнительную деятельность, их должностных лиц,...

    Административное право. Словарь-справочник

  • - I Ван-Сла́йка ме́тоды газометрические методы количественного определения аминного азота, кислорода и углекислого газа крови - см. Азот. II Ван-Сла́йка ме́тоды 1) методы изучения газового состава крови,...

    Медицинская энциклопедия

  • - методы выявления гистиоцитов в препаратах нервной ткани и различных органов с помощью аммиачного серебра или пиридиново-содовых растворов серебра...

    Большой медицинский словарь

  • - методы обезвреживания отбросов, содержащих органические вещества, основанные на их разогревании в результате жизнедеятельности термофильных аэробных микроорганизмов...

    Большой медицинский словарь

  • - методы оценки предположений о характере наследования, основанные на сопоставлении наблюдаемых и ожидаемых соотношений больных и здоровых в семьях, отягощенных наследственными болезнями, с учетом способа...

    Большой медицинский словарь

  • - гистохимические методы выявления ферментов, основанные на реакции образования осадков фосфата кальция или магния в местах локализации ферментативной активности при инкубации срезов тканей с органическими...

    Большой медицинский словарь

  • - радиометрические методы, основанные на использовании g -излучения. По виду излучения различают: Г.-м., использующие g -излучение г. п. и руд, и Г.-м., использующие рассеянное g...

    Геологическая энциклопедия

  • - дистанционного зондирования мйтоды, - общее название методов изучения наземных объектов и космич. тел неконтактным путём на значит. расстоянии разл. приборами в разных областях спектра...

    Геологическая энциклопедия

  • - "...2...

    Официальная терминология

"Дистанционные методы" в книгах

84. Методы элементарной математики, математической статистики и теории вероятностей, эконометрические методы

Из книги Экономический анализ. Шпаргалки автора Ольшевская Наталья

84. Методы элементарной математики, математической статистики и теории вероятностей, эконометрические методы При обосновании потребностей в ресурсах, учете затрат на производство, разработке планов, проектов, балансовых расчетах в обычных традиционных экономических

Дистанционные формы обучения

Из книги Преподавание внетелесных путешествий и осознанных сновидений. Методики набора групп и их эффективного обучения автора Радуга Михаил

Дистанционные формы обучения Описание Дистанционная форма обучения – это личное обучение одного человека или групп людей с преподавателем с помощью различных средств коммуникации. Все прочие частные детали и структуру этого процесса определяет выбранная подформа

Дистанционные настройки

Из книги Секрет целительства Рэйки автора Адмони Мириам

Дистанционные настройки Те из читателей, кто интересовался сайтами по Рэйки в Интернете, наверняка знают, что «настройки Рэйки» получить очень просто. Зайди на соответствующий форум, можно даже не под своим именем, и попроси у ведущего форум Мастера «дистанционную

Дистанционные коррекции: работа по фантому, фотографии и телефонному звонку. Коррекция в обратном ходе времени

Из книги Эниология автора Рогожкин Виктор Юрьевич

Дистанционные коррекции: работа по фантому, фотографии и телефонному звонку. Коррекция в обратном ходе времени Многие целители, колдуны и т. д. для придания себе большей значимости особое значение придают дистанционным видам работы с пациентами: по фотографии,

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 1: ПАРАЛЛАКС

Из книги Астрономия автора Брейтот Джим

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 1: ПАРАЛЛАКС Две соседних звезды одинаковой яркости могут находиться на совершенно разном расстоянии от Земли; одна может быть гораздо ярче и гораздо более отдаленной, чем другая. Метод параллаксаРасстояния до звезд, расположенных менее чем в

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 2: ЗА ПРЕДЕЛАМИ ПАРАЛЛАКСА

Из книги Астрономия автора Брейтот Джим

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 2: ЗА ПРЕДЕЛАМИ ПАРАЛЛАКСА Блеск звезды, наблюдаемой с Земли, зависит от ее светимости и расстояния до нее. Абсолютную звездную величину можно вычислить на основании видимой звездной величины и расстояния до звезды. Эйнар Герцшпрунг в 1911 году и

3. Методы лечения абсцесса и гангрены легкого. Общие и местные, консервативные и оперативные методы лечения

Из книги автора

3. Методы лечения абсцесса и гангрены легкого. Общие и местные, консервативные и оперативные методы лечения Поскольку при гангрене легкого прогноз всегда серьезный, обследование и лечение больных необходимо проводить как можно быстрее. Первоначальной задачей является

Часть 9. Дистанционные информационные взаимодействия живого человека с разными объектами нашего мироздания

автора Лисицын В. Ю.

Часть 9. Дистанционные информационные взаимодействия живого человека с разными объектами нашего мироздания Дистанционные информационные взаимодействия живого организма человека с разными формами существования Вселенной происходят в рамках определенных отношений. К

Глава 1. Дистанционные информационные взаимодействия живых биосистем, включая человека, со свойствами разных веществ

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 1. Дистанционные информационные взаимодействия живых биосистем, включая человека, со свойствами разных веществ В связи с этим большое научное и практическое значение заслуживают исследования Н.Л. Лупичева, В.Г. Марченко (1989 г.) и Н.Л. Лупичева (1990 г.). Они проводили

Глава 2. Дистанционные информационные взаимодействия живого человека с разными предметами

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 2. Дистанционные информационные взаимодействия живого человека с разными предметами В связи с этим ученые А.П. Дубров, В.Н. Пушкин (1989 г) писали: «ПСИХОКИНЕЗ нередко характеризуется как способность человека воздействовать на различные предметы с помощью мысленного

Глава 4. Дистанционные информационные взаимодействия живого человека с явлениями природы

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 4. Дистанционные информационные взаимодействия живого человека с явлениями природы Для этого вновь процитируем прекрасную работу А.П. Дуброва и В.Н Пушкина (1989 г.), в которой они написали следующее: «Автор одной из статей о необычайных способностях А. В. Игнатенко

Глава 4. Дистанционные информационные взаимодействия живого человека с любым растением

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 4. Дистанционные информационные взаимодействия живого человека с любым растением По мнению автора, правомерно процитировать интереснейший фрагмент из работы А.П. Дуброва и В.Н. Пушкина под названием: «БИОИНФОРМАЦИОННЫЙ КОНТАКТ ЧЕЛОВЕК – РАСТЕНИЕ».В связи с этим мы

Глава 5. Дистанционные информационные взаимодействия между людьми

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 5. Дистанционные информационные взаимодействия между людьми Общение посредством речиВ связи с этим практическое значение имеют исследования В.А. Вороневич (1994 г.). Впервые в литературе им представлен уникальный материал, демонстрирующий визуализацию каналов

5.2.1. Методы использования слова (словесные методы обучения)

Из книги Специальный армейский рукопашный бой. Часть 2, Часть 3 главы 10, 11. автора Кадочников Алексей Алексеевич

5.2.1. Методы использования слова (словесные методы обучения) Посредством слова руководитель занятия излагает материал, ставит задачи, формирует отношение к ним, руководит их выполнением, анализирует и оценивает результаты. Основные разновидности этого метода:

49. Химический состав, методы получения порошков, свойства и методы их контроля

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме

Как уже отмечалось, проблема изучения личности политического деятеля - одна из наиболее сложных проблем в политической психологии. Эта сложность усугубляется множественной детерминацией, идеологизированностью оценок личностей политиков, мифологизацией, а иногда и мистификацией их деятельности. Эта проблема усложняется практикой использования в политической жизни страны различных методов манипулирования общественным сознанием.

Проблема еще и в том, что личность политика в реальной жизни - практически недоступный объект для непосредственного, инструментального психологического изучения. Политики не любят и опасаются психологической диагностики, не желают, чтобы их обследовали. Более того, многие из них боятся объективного взгляда на себя. Они не заинтересованы в том, чтобы информация о их психологическом статусе и личностных особенностях, о сильных и слабых сторонах, стала достоянием других. При этом они справедливо полагают, что эта информация может быть использована им во вред. Именно поэтому построение психологического портрета политика, распознавание его реального образа осуществляются в большинстве случаев заочно, опосредованно, методами дистантной диагностики (дистантной оценки - at-a-distance assessment). Ее основные приемы основываются на наблюдении за реальным поведением политика.

Наблюдение лежит в основе любой науки и как метод общепсихологического значения наблюдение, в отличие от других методов этой категории (тестирования, опроса, беседы, эксперимента), не только возможно в любых исследованиях и обстоятельствах, но и неизбежно. Все психологи при проведении исследований так или иначе осуществляют непосредственное наблюдение естественного окружения.

Наблюдение, будучи активной формой чувственного познания, дает возможность накапливать эмпирические данные, обрабатывать первоначальные представления об объектах наблюдения или проверять исходные предположения, связанные с ними. Именно потому, что наблюдение обеспечивает познание путем прямого контакта при помощи органов чувств с объектом изучения, оно исторически стало первым научным методом.

Наблюдение часто служило радикальному решению теоретических проблем. Психология пока не располагает такими поразительными историями великих открытий методом наблюдения, как, например, падающее яблоко у Ньютона или вытесненная из ванны вода у Архимеда. Но психологам хорошо известны выявленные непосредственные связи между наблюдениями этологов и аспектами поведения людей, такими как привязанность у младенцев, агрессивные инстинкты, ухаживание, индивидуальная дистанция, ритуальное переориентирование, умиротворяющие механизмы поведения, реакция воодушевления, социальное торможение и т. д. Самыми знаменитыми из числа этих этологов являются, по-видимому, К. Лоренц 1 и Н. Тинберген .

В определенном смысле все люди являются «наблюдателями человека», но наблюдение как научный метод стоит выше общепринятых представлений и является источником данных, которым можно доверять в силу известной степени их валидности и общности.

Метод наблюдения в исследовании личности политического деятеля является чрезвычайно важным и весьма информативным. В системе методов и приемов изучения личности и ее оценки наблюдение традиционно занимает одно из первых мест, так как способно давать наблюдателю богатые конкретные данные. Наблюдение способно дать максимальный эффект именно в политической психологии в той мере, в какой исследователь данной области знания психологически готов к наибольшей полноте и глубине восприятия психического состояния и поведения человека .

Даже если в качестве основного способа изучения объекта применяется какой-либо другой метод, наблюдение обязательно его сопровождает, входит неотъемлемой частью в его процедуру. Пожалуй, только изучение документов может обходиться без непосредственного наблюдения за объектом исследования. Хотя политический психолог косвенно использует и здесь данные наблюдения, но наблюдения других людей. Таким образом, в основе «всеобщности» наблюдения лежит неотъемлемость восприятия при использовании любых исследовательских приемов.

Здесь представляется уместным заметить, что все тестовые опросники берут свое начало от метода наблюдения. Все они основаны на процедуре наблюдения или, точнее, на ее частном случае - самонаблюдении. Более того, при проведении тестирования исследователь наблюдает за реакциями и поведением испытуемого, следит за соблюдением правил и условий проведения эксперимента. Потребность в создании и развитии тестовых методов и методик возникла не потому, что метод наблюдения менее информативен или менее надежен. Это не так. Проблема в том, что метод наблюдения может быть довольно затратным с точки зрения времени, финансовых, организационных и других ресурсов.

«Наблюдение в психологии, - отмечал С.Л. Рубинштейн, - выступает в двух основных формах - как самонаблюдение, или интроспекция, и как внешнее, или так называемое объективное наблюдение» 1 . Термин «наблюдение» в его последней форме, как справедливо считает Е.А. Климов, используется в трех разных значениях: наблюдение как деятельность, как метод и как методика .

Наблюдение применяется не только в научных исследованиях, но и в различных видах общественной жизни и производственной практики, сохраняя свои основные черты. Является наблюдение научным или практическим, определяется прежде всего характером целей. Научное наблюдение всегда преследует исследовательские, познавательные цели. Наблюдение, включенное в практическую деятельность, направлено на ее обслуживание, результаты наблюдения немедленно используются для достижения цели практической деятельности, тут же проверяется истинность, объективность результатов исследования .

Научные работы, использующие объективное наблюдение 1 , могут варьироваться от эксперимента, где отслеживают и измеряют одну или несколько переменных, до исследований, где психологи наблюдают поведение одного человека или нескольких лиц в естественной обстановке на протяжении значительного периода времени. Примером первого являются работы А. Бандуры, где строго направляемое наблюдение использовано для количественного изучения агрессии в контролируемых экспериментах . Примером второго подхода служит ставшее ныне классическим исследование Д. Розенгана по психиатрической диагностике псевдобольных с незначительной симптоматикой .

Итак, в системе методов изучения личности политического деятеля наблюдение занимает одно из первых мест. Наблюдение предполагает более активное отношение к действительности по сравнению с пассивным созерцанием. Не случайно уже в XVII веке английский философ и естествоиспытатель Р. Бэкон отчетливо отличал пассивное наблюдение (созерцание) от активного, целенаправленного, научного наблюдения, призывая исследователей применять его в своей работе . В качестве примера можно назвать один из первых случаев использования наблюдения Ф. Энгельсом в процессе изучения положения рабочего класса Англии.

В реальной практике применяются дистантное и включенное наблюдения. Последнее предполагает наблюдение «изнутри» социальной группы, когда наблюдатель становится полноправным ее членом. Такое наблюдение применяется как в психологических, так и в социологических исследованиях. Оно было описано еще в начале XX века в повести Д. Лондона «Люди бездны» (1912), а также в книге Н. Андерсона «Бродяга» (1923) и в книге У. Уайта «Общество уличных углов» (1937). Исследователи шли в гущу тех слоев, которые они изучали, и там вели наблюдение. Такой подход широко используется в политической психологии. Включенное наблюдение обладает большими достоинствами. Оно даст возможность вскрывать многие стороны изучаемого человека. Однако включенное наблюдение далеко не всегда возможно и уместно при изучении личности политика.

Хотя мы всегда наблюдаем, чтобы собирать информацию, термин «наблюдение», используемый для описания психологического исследования, означает обычно, что как минимум проводятся наблюдения за поведением объекта в конкретное время или в контексте определенных событий. Но наблюдение выступает и специальным методическим приемом со своими особенностями, и тогда мы можем говорить о нем как о специальном методе в той или иной научной дисциплине. «Великое преимущество наблюдения состоит в том, что оно... выявляет в объекте его бесчисленные свойства и взаимосвязи. Наблюдение дает целостный и естественный образ, а не набор точек. Чем проще метод наблюдения и чем менее мы полагаемся на средства увеличения и выделения отдельных деталей, тем шире поле исследования и тем более естественным образом оно сохраняется неповрежденным» 1 .

Наблюдая внешнее протекание действий человека, то есть фактически осуществляя визуальную психодиагностику , мы изучаем не внешнее поведение само по себе, как если бы оно было дано в отрыве от внутреннего психического содержания деятельности, а именно это внутреннее психическое содержание, которое должно раскрыть наблюдение. В объективном наблюдении внешняя сторона деятельности является лишь исходным материалом наблюдения, а подлинным его предметом служит ее внутреннее психическое содержание. По замечанию С.Л. Рубинштейна «в этом основная принципиальная установка наблюдения в нашей психологии в отличие от поведенческой психологии, которая делала именно внешнюю сторону единственным предметом психологического наблюдения» .

Таким образом, объектом психологического наблюдения является тот, за кем ведется наблюдение, - отдельный человек или группа людей в их совместной деятельности. Предметом наблюдения, в интересах психодиагностики личности выступают только внешние экс- гериоризованные компоненты поведения и деятельности, которые, в свою очередь, вплетенй во внутренний мир личности и являются внешней формой существования и проявления психического мира личности.

К внешним компонентам поведения и деятельности психологи относят: а) моторные компоненты практических и гностических действий; движения, перемещения и неподвижные состояния людей; скорость и направление движения; дистанция между ними; соприкосновения, толчки, удары; совместные действия (группы) людей; б) речевые акты, их содержание, направленность, частота, продолжительность, интенсивность, экспрессивность, особенности лексического, грамматического и фонетического строя, экспрессия звуков 1 ;

в) мимика и пантомимика; г) внешние проявления некоторых вегетативных реакций: покраснение или побледнение кожи, изменение ритма дыхания, потоотделение и т. д., а также сочетание перечисленных признаков .

Исследования отечественных психологов основываются на принципах единства сознания и деятельности, общего строения внешней и внутренней деятельности, взаимосвязи значения и личностного смысла. Эти принципы, изложенные в трудах Б.Г. Ананьева, Л.С. Выготского, А.Н. Леонтьева и С.Л. Рубинштейна, составляют методологическую основу применения метода наблюдения в эмпирических психологических исследованиях и предполагают возможность изучения различных уровней психического отражения на основе выделения их регулирующей роли в деятельности.

По нашему мнению, через учет вышеназванных общих положений, относящихся к методу наблюдения - как основе организации визуальной психодиагностики политика, можно разрешить принципиальную трудность, с которой связано объективное наблюдение в психологии. Как можно посредством объективного, внешнего наблюдения изучать психические, внутренние процессы?

Рассматриваемый подход к психологической категории «наблюдение», определяет цель визуальной психодиагностики: через восприятие психологом внешних проявлений поведения политика осуществить диагностику внутреннего психического содержания конкретного человека.

Краткое определение наблюдения находим у В.В. Никандрова. У него «наблюдение: организованное восприятие» 1 . Другое, не менее краткое, определение у А.Т. Никифорова, В.Е. Семёнова: «спланированное восприятие» . Более развернуто: наблюдение - это целенаправленное, организованное и фиксируемое восприятие психических явлений с целью их изучения в определенных условиях. У И.Д. Ладанова и Ю.В. Чуфаровского наблюдение - «это систематическое, целеустремленное, планомерное изучение психических явлений путем личного восприятия исследователем внешних проявлений психики непосредственно в жизни...» . У Б.Г. Мещерякова и В.П. Зинченко наблюдение определяется как «преднамеренное и целенаправленное восприятие, обусловленное задачей деятельности» . Наконец, у С.В. Попова наблюдение трактуется как планомерное, целенаправленное и обусловленное задачей деятельности восприятие объектов, событий и явлений окружающего мира .

Практически все авторы предусматривают главные требования, предъявляемые к наблюдению как к научному психологическому методу. Это: наличие цели, опосредованность теоретическими представлениями, организованность процесса наблюдения и регистрация получаемых данных. К этому необходимо добавить требования полноты и релевантности фиксируемого материала изучаемым явлениям.

С методической точки зрения наблюдение в психологии характеризуется «универсальностью», то есть применением его к изучению такого широкого круга психических явлений, какого, пожалуй, не имеет никакой другой метод психологии. Наблюдение обладает гибкостью, то есть возможностью по ходу изменять «поле охвата» изучаемого объекта или проверяемую гипотезу, и отсутствием или минимальными требованиями к аппаратному обеспечению проведения наблюдения. Эти характеристики до сих пор позволяют наблюдению сохранить свое значение как основного метода психологии.

Согласно определению наблюдения по другому основанию выделяется непосредственное и опосредствованное наблюдение. В первом случае наблюдение политика осуществляется психологом. Опосредствованное наблюдение имеет место в тех случаях, когда психолог получает сведения о наблюдении, произведенном другими лицами.

Наблюдение за объектом - это всегда восприятие его действий и поведения. Из всей возможной информации мы неизменно производим отбор, который зависит от нашей направленности и особенностей нашей личности. Мы часто воспринимаем то, что думаем воспринять, и часто произвольно интерпретируем воспринятое. Эту закономерность наблюдения мы обязательно учитываем, чтобы избежать субъективности. В связи с этим к психологу предъявляются следующие требования. Во-первых, он должен знать особенности своей личности по наблюдению за объектами. Во-вторых, уметь вести наблюдение различными способами. В третьих - планировать наблюдение.

По способности наблюдать П. Фрасс и Ж. Пиаже всех людей делят на три группы:

  • а) те, кто правильно оценивает самих себя; эти люди обладают высоким интеллектом и чувством человечности;
  • б) те, кто правильно оценивает своих друзей и знакомых; эти люди менее общительны, чем предыдущие, но обладают более артистичной натурой;
  • в) те, кто лучше оценивает незнакомых людей; эти люди умны, художественно одарены, но не вполне приспособлены к социальной жизни.

В целом считается, что сходство в деятельности наблюдателя и наблюдаемого ведет к более точной оценке. Отсюда, мужчины лучше оценивают мужчин, женщины - женщин, негры - негров и т. д. Однако это правило имеет свои границы: объективнее оценивает человек, обладающий более высоким уровнем эмпатии. Увеличение числа наблюдателей лишь до определенного предела повышает качество оценки. Чтобы получить довольно объективно представление о человеке с коэффициентом надежности 90, достаточно обработать данные четырех-пяти наблюдателей 1 .

Наличие осознанной цели создает соответствующую установку на объект и предмет наблюдения. Наблюдатель уже знает, что он должен увидеть и зафиксировать в той или иной ситуации. Именно на этих фактах и явлениях он сосредоточивает свое внимание, подмечая их даже в тех случаях, когда они не явны, малозаметны, замаскированы другими событиями или преднамеренно скрываются объектом наблюдения.

Целенаправленность наблюдения обусловливает его избирательный характер, выделяет главное, существенное для исследователя. На первый взгляд, избирательность наблюдения как будто противоречит требованию полноты, которое иногда понимается как абсолютное соответствие фиксируемых данных наблюдаемой ситуации, а в пределе - фотографичности . Но, как известно, «никто не может объять необъятное», то есть принципиально невозможно зафиксировать все бесконечное многообразие действительности даже в ограниченных в пространстве и времени условиях конкретной наблюдаемой ситуации.

Наблюдать «все и вообще» невозможно. Вспомним о селективности восприятия как об одном из свойств восприятия. Поэтому отбор актуально значимой информации из всего многообразия воздействующих на человека раздражителей неизбежен. Но именно наличие цели превращает этот отбор из стихийного процесса в процесс осознанный и планомерный. Стихийность чревата, с одной стороны, получением фактов, не имеющих отношения к изучаемому явлению, а с другой - пропускам в сведениях, касающихся этого явления. Планомерность же обеспечивает необходимую полноту знаний об объекте наблюдения.

Планомерность предполагает и системность наблюдения, то есть такое восприятие объекта, которое может дать целостное представление о нем. Это уже позволяет избежать существенных пробелов в знаниях об объекте изучения. Планомерность и системность вносят в наблюдение элемент единообразия установок и условий восприятия. Последние в естественных ситуациях не зависят от наблюдателя. Не имея плана, исследователю гораздо труднее определить, за счет чего появляются различия в разных наблюдениях: или за счет не поддающихся учету изменений в условиях, или за счет самих явлений.

Планы исследований с применением метода наблюдения могут различаться по трем основным показателям. Во-первых - по обстановке: искусственная или естественная. В привычном порядке жизни и деятельности поведение объекта наблюдения оказывается более естественным, а эксперимент предполагает некую искусственность.

Во-вторых - по структуре: данные наблюдения регистрируются на заранее заданной основе или собираются в открытой, качественно разнообразной форме. Структурированные методы применяются для сбора количественных данных. Количественная оценка может производиться либо непосредственно в ходе наблюдения, либо на основании записей. В формализованных подходах важно то, что регистрация наблюдений имеет определенную общую основу и наблюдателям обычно требуется предварительное обучение для освоения техники регистрации. Контролируемое наблюдение с применением формализованной системы сбора данных часто называется систематизированным наблюдением. Исследования такого типа основываются на как можно более высокой надежности работы всех наблюдателей. Совершенно другую группу составляют исследования, не имеющие предопределенной схемы наблюдений, и открытые для сбора широкого спектра данные, которые позднее анализируются. Качественные исследования, основанные на наблюдении, обычно предполагают сбор большого массива качественных полевых данных. Целью исследований обычно являются объяснение «жизни как она есть» в наблюдающейся ситуации, а также ее осмысление.

В-третьих - по осведомленности: знает ли испытуемый, что за ним ведется наблюдение. Политический психолог всегда должен учитывать возможную непредсказуемую реакцию объекта наблюдения и лиц из его окружения - помощники, группа поддержки, охрана и другие лица, если они выявят ведущееся за ними наблюдение.

С.Л. Рубинштейн определяет наличие целевой установки как первое основное требование к наблюдению. «Ясно осознанная цель должна руководить наблюдателем, давая ему правильную установку на предмет наблюдения. В соответствии с целью должен быть определен план наблюдения, зафиксированный в определенной схеме» 1 . В части, касающейся визуальной психодиагностики политика, под схемой оценки наблюдаемых параметров поведения понимается «познавательная структура, относящаяся к классу сходных действий, имеющих определенную последовательность» в отслеживании и фиксации внешних факторов поведения, характеризующих психические состояние и свойства изучаемого человека. Схема наблюдения служит основой для целенаправленного изучения поведения политика в процессе визуальной психодиагностики. Она обеспечивает психологу возможность, с одной стороны, систематизировать собственный процесс наблюдения, с другой - выработать конкретные приемы для решения задач изучения объекта.

Использование при этом фото- и видеоаппаратуры позволяет повысить объективность наблюдения, проанализировать зафиксированные параметры, осуществить дополнительную и независимую оценку фактического материала помимо его первичного истолкования. Использование приборного визуального наблюдения, в частности видеосъемки, позволяющей регистрировать поведение интересующих лиц, в настоящее время находит свое применение в современной психологической практике. Результаты наблюдения подлежат точной и исчерпывающей регистрации. При этом суть принципов при опосредованном (техническом) наблюдении сохраняются так же, как и при наблюдении непосредственно органами зрения.

Целенаправленность и вытекающие из нее плановость и систематичность наблюдения составляют самую существенную черту его как научного метода. Они оформляются в конечном итоге в его организованность. Под организованностью понимается определенная упорядоченность действий наблюдателя, повышающая рациональность и эффективность восприятия и регистрации наблюдаемого явления. Сознательно организованное наблюдение представляет специальную процедуру по получению информации об объекте исследования. В этой процедуре в первую очередь предусмотрен порядок, последовательность действий. Но этот порядок может изменяться в зависимости от складывающихся обстоятельств, поскольку определена иерархия значимости возможных событий. Организация наблюдения сводит к минимуму вероятность пропуска существенного и повышает вероятность обнаружения малозаметных фактов. Степень организованности может быть различной. От минимума при случайных наблюдениях, когда имеется только психологическая установка на восприятие неожиданного, до предельно алгоритмизированных наблюдений.

В последние годы некоторые исследователи, к которым принадлежит автор, организуют наблюдение особым образом и используют его в варианте так называемой безбланковой диагностики 1 . При такой организации наблюдения психолог работает с параметрами различных классических тестовых методик, например 16 PF и / или MMPI , но добывает эмпирический материал без бланков, посредством собственно наблюдения, экспертных оценок и других доступных процедур. Такая диагностика требует опыта и мастерства специалиста, так как данные, на которые в основном может рассчитывать психолог в условиях российской политической действительности, - это данные, полученные путем регистрации поведения человека в повседневной жизни, так называемые «Ь»-данные (от «life record data»).

Конечно, идеально было бы иметь полное и подробное описание образа жизни интересующего нас политика, однако на практике это неосуществимо. В лучшем случае удается получить информацию относительно отдельных периодов или сторон его жизни и политической карьеры. Поэтому чаще всего «Ь»-данные получают путем формализации оценок экспертов и респондентов, наблюдающих поведение объекта нашего интереса в определенных ситуациях и в течение определенного периода.

С «Ь»-данных обычно начинаются предварительные исследования, при этом важно с достаточной полнотой охватить сферу исследования. Р. Кэттелл считает, что «Ь»-данные оптимальны для установлсния тех признаков поведения, которые нуждаются в изучении. «Ь»-данные удобны также тем, что практически все виды поведения уже представлены в языковой форме. Это гарантирует не только оптимальный начальный выбор переменных, но и более доступную интерпретацию полученных факторов.

«Ь»-данные также используются как внешний критерий, относительно которого измеряется валидность результатов, полученных с помощью других методов. Однако такое использование «Ь»-данных не совсем правомерно, так как внешние оценки не являются достаточно достоверной мерой поведения. Восприятие поведения другого человека всегда несколько искажено в связи с особенностями личности самого эксперта. Поскольку разные эксперты будут давать различные оценки, возникает проблема измерения надежности самого эксперта. В настоящее время эта проблема не решена и является предметом изучения. Тем не менее предложен ряд методов для определения средней надежности экспертов в случаях, когда оценивание осуществляется несколькими экспертами .

Важная задача при организации и проведении наблюдения - это повышение надежности внешних оценок за счет снятия систематических искажений. Одним из примеров систематических ошибок при внешних оценках может быть влияние на оценки позитивного или негативного отношения эксперта к изучаемому политику, что получило название «эффект ореола». Примером систематических искажений метода внешних оценок является также влияние на оценку разницы в статусе эксперта и оцениваемого политика. Неудивительно поэтому, что внешние оценки, даваемые одному и тому же лицу по одному и тому же набору личностных черт людьми, занимающими по отношению к изучаемому разное положение, могут оказаться слабо коррелированными между собой. Искажения, вносимые в измерение черт личности определенным способом измерения, определяются как инструментальные искажения. Причем они наиболее значительны именно при методе внешних оценок.

Для повышения надежности «Ь»-данных разработаны специальные требования к процессу получения экспертных оценок. Вот некоторые из них.

  • 1. Оцениваемые черты должны определяться в терминах наблюдаемого поведения.
  • 2. Эксперт должен иметь возможность наблюдать за поведением оцениваемого лица достаточно длительный промежуток времени.
  • 3. Необходимо не менее десяти экспертов на одного оцениваемого.
  • 4. Ранжирование испытуемых должно производиться экспертами только по одной черте вместо оценивания одного испытуемого сразу по всему комплексу характеристик. То есть вместо того, чтобы просить эксперта оценивать одного испытуемого сразу по нескольким чертам, его просят упорядочить всю группу по одному признаку, например, проранжировать 20 человек по их общительности, определяемой как готовность заговорить с незнакомым человеком. В другой день, когда эксперт уже забыл о порядке расположения по общительности, ему дается задание проранжировать по другой черте и т. д.

Применение такого способа проведения экспертного опроса может поднять надежность получаемых данных на уровень, достаточный для практического использования.

Как научный метод наблюдение включает в себя и момент фиксации данных. Не имея четко зарегистрированных данных наблюдения, невозможно в дальнейшем получить никаких научных результатов и продвинуться в познании. Фиксации подлежат не только факты наблюдаемой психической деятельности объекта изучения, но и объективные и субъективные условия, сопутствующие обстоятельства и феномены и даже возникающие по ходу наблюдения гипотезы исследователя. Довольно часто несущественные и даже посторонние на первый взгляд события, факты, замечания впоследствии приобретают большое значение. Поэтому пренебрегать ими не следует и желательно соответствующие сведения заносить в регистрационные документы. В качестве последних чаще всего выступает дневник наблюдения, в котором ведутся соответствующие записи, собираются протоколы разовых наблюдений, выполненные рисунки, фотографии и прочий иллюстративный материал.

Существенное место в процессе наблюдения занимает речь. Наблюдение предполагает четкую вербализацию целей, задач и полученных результатов. Этот круг проблем экспериментально исследовался А.В. Беляевой и В.Н. Носуленко . Проведенные исследования позволили выявить разные виды стратегий вербализации результатов наблюдения. Авторы выделили три типа стратегий, каждый из которых, в свою очередь, включает два полярных и один нейтральный варианты.

Первый тип характеризуется способом осуществления операций сравнения и категоризации значимых признаков вербально описываемого образа. Второй тип стратегии характеризуется способом установления структурных отношений при построении вербализованного образа через описание состояния или процесса. Третий тип выделен авторами по направленности процесса построения вербализованного образа: от целого к деталям или наоборот. Крайними вариантами здесь являются глобальная и поэлементная стратегии. В реальных ситуациях наблюдения соотношение разных вариантов стратегий весьма динамично.

Итак, к психологическому наблюдению как научному методу предъявляются следующие требования: 1) целенаправленность, 2) опора на теоретические и методологические основания, 3) избирательность, 4) плановость, 5) системность, 6) организованность, 7) фикси- руемость, 8) релевантность, 9) полнота.

Определение наблюдения как исследовательского метода включает и фактор «определенных условий». В самом общем виде под условиями понимается определенная ситуация, то есть обстоятельства, в которых разворачиваются события, и развивается психическая деятельность объектов наблюдения. Ситуации наблюдения могут быть классифицированы по следующим основаниям на виды: 1) естественные или искусственные; 2) управляемые или неуправляемые наблюдателем (они еще определяются как контролируемые или неконтролируемые); 3) спонтанные или организованные; 4)стандарт- ные или необычные; 5) нормальные или экстремальные; 6) игровые - учебные - производственные. Кроме того, по виду контактов различают ситуации: 7) непосредственные-опосредованные; 8) вербальные- неречевые; 9) кратковременные - длительные.

Целенаправленное научное наблюдение применяется в следующих случаях: 1) ориентировка в проблеме - получение информации, способствующей прояснению проблемы, уточнению вопросов, формулировке гипотез; 2) сбор информации об объекте изучения, когда другие методы неприемлемы или их применение ограничено; 3) дополнение, уточнение или контроль результатов, полученных другими методами; 4) иллюстрация предложенных гипотез, интерпретаций, догадок, теорий.

На основе проведенного анализа для решения задач психологического диагностирования личности политика выделим возможности и ограничения наблюдения как метода научного исследования.

Возможности: 1) наблюдение как метод является источником всесторонних данных; 2) наблюдение не полагается на надежность памяти наблюдателя; 3) наблюдение исключает искажение вследствие взаимодействия с наблюдателем (кроме случаев прямого наблюдения); 4) политический психолог может наблюдать то, что сам политик не замечает вследствие чрезвычайной привычности обстановки; 5) наблюдение позволяет изучать тех политиков, кто не желает отвечать на вопросы; 6) наблюдение позволяет использовать различные методы и методики систематизации и формализации полученной в результате наблюдения информации; 7) сбор информации методом наблюдения не влияет на естественный ход событий и не препятствует естественности психологических проявлений наблюдаемых. Обычно люди, за которыми ведется наблюдение, не знают об этом. В связи с такой неосведомленностью могут возникать этические проблемы, требующие квалифицированного и деликатного подхода со стороны политического психолога.

Ограничения: 1) наблюдаемое поведение политика трактуется с точки зрения наблюдателя, в связи с этим возможны всякого рода искажения и тенденциозный отбор информации; 2) параметры психических явлений описываются опосредованно - по внешнему облику, поведению и т. д., в которых психологические состояния и характеристики напрямую не отражаются; 3) возможна непредсказуемая реакция объекта наблюдения в случае обнаружения им факта наблюдения; 4) отдельные явления, недоступные наблюдению; 5) недоступность данному методу некоторых скрытых проявлений психики - переживания, мысли, мотивы; 6) наблюдение практически всегда связано со значительным расходованием времени и средств; 7) существует проблема анализа качественных данных, если их обрабатывают количественными методами; 8) трудность формализации полученных данных, что усложняет их количественный анализ; 9) пассивная роль наблюдателя, ожидающего интересующие его события, при том, что вероятность их появления не высока; 10) трудность точного установления причин наблюдаемых явлений из-за невозможности учета всех воздействующих факторов.

Нам остается согласиться со словами классиков отечественной психологии в том, что «основным, как и всюду, методом исследования является наблюдение» . Метод наблюдения способен дать максимальный эффект в той мере, в какой исследователь именно данной области психологии готов к наибольшей полноте и глубине восприятия поведения изучаемого политического деятеля.

Важную информацию об изучаемом политике психологи получают при анализе документов. При этом документы в социальных науках понимаются достаточно широко. К ним относятся официальные документы и личная документация в собственном смысле слова, в том числе автобиографии, дневники, письма, конспекты, фотографии, материалы массовой коммуникации, литературы и искусства и т. д.

Все документы, с которыми работает политический психолог можно классифицировать по трем основаниям. Во-первых, по способу фиксации информации: рукописные и печатные документы, электронные и другие носители информации. Во-вторых, по статусу документа: личные и официальные документы. Личные документы - это дневники, письма, записки и т. д. Официальные документы: отчеты, справки, статьи, опубликованные интервью, брошюры, книги. В-третьих, по характеру документов: естественно функционирующие и созданные специально для каких-то целей. В каждом конкретном случае тот или иной документ будет иметь различный информативный вес.

В работе с документами возникает проблема в связи с тем, кто интерпретирует документ, - человек со своими собственными, присущими ему индивидуальными психологическими особенностями и пристрастиями. Важнейшую роль при изучении документа играет, например, способность к пониманию текста. Проблема понимания - это особая проблема в психологии, но здесь она включается в процесс применения методики, поэтому мы ее не будем принимать во внимание 1 .

Контент-анализ является эффективным методом для преодоления этого вида «субъективности» (интерпретации документа исследователем) . Сущность контент-анализа заключается в систематической фиксации заданных единиц изучаемого содержания и в их квантификации. Делаться это может в самых разнообразных целях в русле той или иной теории или концептуальной схемы, в том числе и для нужд психодиагностики.

Контент-анализ основан на принципе повторяемости, частотности различных смысловых и формальных элементов в документах - определенных понятий, суждений, тем, образов и т. п. Поэтому данный метод применяется только тогда, когда имеется достаточное количество материала для анализа, то есть представлено довольно много отдельных однородных документов, писем, фотографий и т. д. или есть несколько или даже один документ, например, дневник, но достаточного объема. При этом интересующие нас элементы содержания также должны встречаться в исследуемых документах с достаточной частотой. В противном случае наши выводы будут лишены статистической достоверности. Критерием здесь служит закон больших чисел.

В истории развития метода изучения документов имеется довольно разнообразный опыт его применения для психологических целей. Начиная с 20-х годов XX века, в социологии и психологии, помимо интуитивно-качественного подхода в изучении документов все чаще стали применять количественные методы. В СССР еще в 20-х годах количественные методы при изучении документов использовали психологи Н.А. Рыбников, И.Н. Шпильрейн, П.П. Блонский, социолог В.А. Кузьмичёв и др.

Качественно-количественный анализ содержания в 20-е годы использовал в своих работах известный русский исследователь биографических материалов Н.А. Рыбников, который в частности рассматривал автобиографии как психологические документы, документирующие личность и ее историю 1 .

В США тогда же квантификацию в исследовании материалов массовой коммуникации вводили М. Уилли, Г. Лассуэл и др. В 40-50-е годы в США был сформирован специальный междисциплинарный метод изучения документов - контент-анализ (англ, content analysis; от content - содержание). Позднее он пришел в европейские страны. В нашей стране с конца 60-х годов этот метод также получает распространение в социологических , социально-психологических , а позднее и в политико-психологических исследованиях .

Различные модификации метода контент-анализа весьма активно используются зарубежными политическими психологами . Так, например, в исследованиях известных американских ученых Д. Уинтера и М. Херманн с соавторами контент-анализу подверглись тексты выступлений Дж. Буша и М. Горбачёва .

Д. Уинтер и его соавторы пишут: «Как могут психологи оценивать мотивы людей, с которыми они не встречались и которых не могут изучать напрямую? В предшествующие годы было разработано множество объективных методов измерения мотивов и других личностных характеристик «на дистанции» с помощью систематического контент-анализа речей, интервью и прочих спонтанных вербальных материалов» 1 . Эти методы часто использовались в обобщающих исследованиях политического лидерства, например, в прогнозировании внешнеполитических ориентаций или склонности к насилию. Однако в отдельных случаях дистантные методы использовались для создания систематических портретов политических лидеров. Главная гипотеза дистантного исследования такого типа состоит в том, что слова политика и опирающиеся на них показатели являются приемлемыми способами изучения его личности.

Авторы исследования исходили из того, что изучение личностных переменных, которые измеряются с использованием специально разработанных процедур, действительно позволяют преодолевать влияние авторства, впечатлений и эго-защиты. Качественный метод контент-анализа рассматривает авторский текст как своего рода проекцию личности, отражающую особенности его психологии. Единицей анализа являются не слова, а образы. Качественный контент- анализ позволяет выделить важные и актуальные аспекты личности политика и сделать их анализ надежным при помощи эксплицитной кодировки фрагментов текста в соответствии с определенными переменными и количественной обработкой данных. Наряду с чисто качественными особенностями метод контент-анализа позволяет использовать и количественные параметры, позволяющие получить более надежные результаты. Таким образом, опыт применения качественноколичественного анализа различных документов демонстрирует его значительные возможности в психологическом портретировании.

Метод экспертных оценок используется наряду с контент- анализом. Он позволяет оценить отдельные качества личности политика и дать прогноз ее поведения. Примером использования метода экспертных оценок является подход П. Коуверта, основанный на Q-сортировке (Q-sorting). Этот метод позволяет исследователю компилировать экспертные оценки индивидуальности тех людей, непосредственное изучение поведения которых недоступно. Как и контент-анализ, Q-сортировка является строгим и объективным методом сравнения субъективных оценок личности политика .

Достоинством метода экспертных оценок является то, что он позволяет учитывать так называемые коэффициенты солидарности опрашиваемых. Вместе с тем оценки экспертов не всегда основаны на систематических критериях исследования личности. В некоторых случаях высокий коэффициент солидарности среди опрашиваемых может просто указывать на то, что результат опроса - это набор общеизвестной информации и мифов относительно личностных характеристик политиков.

Недостаток метода экспертных оценок заключается в его неэкономичности и громоздкости. Например, чтобы собрать данные для своего исследования о влиянии личности на феномен американского президентства, П. Коверт 1 опросил сорока двух экспертов. С. Рубен- цер и его соавторы при создании своей работы о президентах США встретились с сотнями биографов, политологов, журналистов и чиновников, добились сотрудничества со ста десятью экспертами, которые заполнили в общей сложности сто пятьдесят шесть оценочных бланков, содержавших по шестьсот двадцать пунктов каждый.

Метод экспертных оценок с трудом может быть использован для изучения политиков в разгар избирательных кампаний, когда бывает особенно необходимо дать точную оценку личности того или иного кандидата в плане его психологической пригодности для будущей должности. В таких условиях историки и биографы - это не самые оптимальные источники информации. Более практичным было бы получать данные напрямую из сочинений экспертов, что требует их активного сотрудничества с исследователями.

В отличие от широких и абстрактных когнитивных элементов, которые опираются на психологические теории личности, концепция операционального кода была разработана в основном для исследования политических убеждений. Понятие операционального кода является своеобразным медиатором, связующим звеном между политическим сознанием и поведением. С его помощью политический психолог имеет возможность исследовать политика путем как качественного, так и количественного анализа, используя при этом и тексты выступлений самого лидера, и интервью с его соратниками и биографами. На основании вербальных проявлений политического сознания политический психолог может реконструировать и поведенческие характеристики личности.

Комбинируя различные измерения операционального кода, исследователь может выявить специфические черты конкретного лидера и сравнить его характеристики с данными других политиков. Кроме того, этот метод предоставляет возможности для изучения влияния системы убеждений политического деятеля на его политическое поведение. Исследователи операционального кода в целом согласны с тем, что убеждения политика влияют на его политическое поведение, определяя его позиции по тем или иным вопросам. При этом в большинстве как теоретических, так и эмпирических работ об операциональном коде в центре анализа оказывалась именно природа системы убеждений политика, а не его политическое поведение . Операциональное кодирование является оптимальным методом для анализа когнитивных характеристик личности политического деятеля, находящегося под влиянием эффектов власти и политических кризисов.

Методы психолингвистического анализа политического текста обладают значительным диагностическим потенциалом2. При этом под текстом понимается любой отрезок связной речи, начиная с простого высказывания в повседневной речи - до рассказа, романа, публицистической статьи или любого научного текста. Б.Ф. Поршнев

пишет, что «из всех знаковых средств, из всех механизмов человеческого общения, первенствующее значение принадлежит, конечно, речи» 1 . Внимательно вслушиваясь в речь незнакомого собеседника, наблюдая его в разных коммуникативных ситуациях, мы можем составить портрет языковой личности . Речь человека несет в себе информацию о самых различных чертах личности говорящего. «Человек говорящий» предстает в виде многогранного, многопланового объекта исследования, неповторимость которого определяется уникальной комбинацией социально-психологических характеристик.

Итак, политический психолог, применяющий разнообразные методы диагностирования, в полной мере должен знать их потенциал - это является важным условием эффективности его работы и отражает ориентацию на профессионально оправданные возможности получения значимой психологической информации. Вместе с тем в реальной практике даже опытные психологи часто ориентируются или на текст, произносимый политиком, или на психологические тесты. Различные психодиагностические методы, компьютерные программы тестирования не исключают и не заменяют психологического наблюдения, которое может оказаться информативнее и динамичнее машинной характеристики. Политик чаще «говорит» лицом, позой, одеждой, нежели «крестиками» на бланках тестов. Политический психолог должен стремиться не только к овладению разнообразными инструментальными методами психологического диагностирования, но и к освоению безбланковой психодиагностики, которую профессор Г.В. Суходольский назвал «органолептической психодиагностикой», то есть распознаванием личностных качеств человека с максимальным использованием в первую очередь органов чувств, а не только психометрических инструментов .

Все перечисленные в настоящей работе методы требуют для своего применения не только профессионализма в исполнении и соответствующей профессиональной этики, но и навыков в интерпретации полученных результатов. Они складываются не только из собственно психологических методик, но и из умения соединять их с анализом политического контекста, в котором действует политик и который придает соответствующий смысл его поступкам. К сожалению, есть немало примеров того, как профессиональные психологи, не имевшие опыта работы с политиками, терпели неудачу в установлении контакта с клиентом в конкретной политической ситуации, которую они плохо понимали. Отсюда можно сделать вывод, что для эффективной работы политическому психологу недостаточно только владеть собственно психологическими методами. Ему необходимо грамотно анализировать политический контекст, знать расклад политических сил как в ситуации в целом, так и в ближайшем окружении политика 1 .