Уход за лицом: полезные советы

Каково биологическое значение полового размножения. Реферат половое размножение и его биологическое значение. Биологическое значение и стадии гаметогенеза

Каково биологическое значение полового размножения. Реферат половое размножение и его биологическое значение. Биологическое
 значение и стадии гаметогенеза

1. Дайте определения понятий.
Размножение – свойство живого воспроизводить себе подобных.
Бесполое размножение – это способ размножения, при котором не образуются гаметы и участвует одна материнская особь.
Спорообразование – способ бесполого размножения, при котором новый организм развивается из специализированных клеток – спор, образующихся в спорангиях.
Вегетативное размножение – способ бесполого размножения, при котором дочерний организм образуется из нескольких родительских клеток.
Половое размножение – процесс образования дочернего организма при участии гамет.
Половой диморфизм – внешние различия особей противоположного пола.

2. Заполните таблицу.

3. Подпишите на рисунке способы вегетативного размножения.

4. Могут ли потомки, полученные в результате вегетативного размножения, отличаться от материнского организма? Ответ обоснуйте.
Да, могут, но незначительно. Даже однояйцевые близнецы отличаются, так как существует ненаследственная (модификационная) изменчивость. Также, если у потомков произошли соматические мутации.

5. Сравните бесполое и половое размножение. Выделите преимущества и недостатки обоих типов размножения. Заполните таблицу.


6. Значение полового размножения:
Обеспечивает появление уникальных комбинаций генетического материала в новой особи, что помогает выжить в меняющихся условиях окружающей среды.

7. Значение бесполого размножения:
В постоянных условиях среды дает преимущество того, что особи дочерние одинаковы, т. е. приспособлены именно к определенным условиям. Процесс размножения идет очень быстро.

8. Почему в природе существуют две формы размножения организмов, а не одна?
То, что хорошо в одних условиях, может оказаться неподходящим в другой ситуации, поэтому у многих видов существует чередование разных форм размножения.

9. Какое значение для эволюции жизни на Земле имело появление полового размножения?
Оно обеспечило возникновение новых более сложных организмов, приспосабливаемых в различных условиям, появление генетического разнообразия видов.

10. У многих высших растений основным способом размножения является бесполое вегетативное, а половое выполняет вспомогательную роль. У большинства животных ситуация обратная. Как вы думаете, почему?
Животные ведут активный образ жизни, передвигаются, условия их жизни постоянно изменяются. В то время как растений больше, они вырабатывают намного больше пыльцы, чем половых клеток. Животным проще найти партнера для размножения, чем растениям. Необходимо, чтобы потомки животных отличались от родительских особей, для их выживания и эволюции.

11. Установите соответствие между способами бесполого размножения и организмами, для которых они характерны.
Способы размножения
1. Простое деление на два (не митоз)
2. Митотическое деление
3. Спорообразование
4. С помощью специализированных частей тела
5. Фрагментация
6. Почкование
Организмы
A. Аспергилл и пеницилл
Б. Холерный вибрион
B. Дождевой червь
Г. Дизентерийная амеба
Д. Красный коралл
Е. Тюльпан

12. Выберите правильный ответ.
Тест 1.
Гермафродитом не является:
3) человеческая аскарида;

Тест 2.
К специализированным частям тела растения, обеспечивающим вегетативное размножение, не относится:
3) цветок гладиолуса;

Тест 3.
Широкое распространение бесполого размножения среди высших растений связано с:
4) большой скоростью такого типа размножения.

Тест 4.
Большая эволюционная прогрессивность полового размножения обусловлена тем, что оно:
2) обеспечивает генетическое разнообразие потомства;

13. Вставьте пропущенные термины.
Наиболее древним типом размножения животных и растений является бесполое размножение.
Спорами размножается большинство водорослей, а из высших растений - моховидные, плауновидные, хвощевидные и папоротниковидные, которые так и называются Высшие споровые растения.
Вегетативное размножение основано на способности растений к регенерации.
Сравнительно немногие растения, например бегония, глоксиния, узумбарская фиалка, могут восстанавливаться из отрезанных частей листа.

14. Познавательная задача (ответ устный).
Некоторые дикорастущие растения способны образовывать так называемые выводковые почки, которые, опадая в воду или на благоприятную почву, дают начало новому растению. Объясните, почему такие растения распространены в основном в полярных, высокогорных и степных местностях.
В таких условиях растениям можно легко потерять цветки или плоды, поэтому выводковые почки распространяются подобно семенам, опадают и укореняются.

15. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих

16. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин – гермафродит.
Соответствие – соответствует по смыслу, но современное значение – это термин, а ранее так называли двуполое существо, считавшееся богом и чудовищем.

17. Сформулируйте и запишите основные идеи § 3.5.
Размножение – свойство живого воспроизводить себе подобных.
Способы: бесполое и половое.
Бесполое – не образуются гаметы и участвует одна материнская особь. Бывает:
1. Деление (у простейших, бактерий).
2. Спорообразование (у растений, грибов).
3. Вегетативное (у растений и некоторых примитивных животных).
Разновидности вегетативного размножения: фрагментация, почкование, при помощи специализированных частей тела (корневище, клубни, усы и др.)
Половое размножение – при помощи гамет, участвует 2 особи.
Достоинства полового размножения – уникальная комбинация генетического материала в новой особи помогает выжить в меняющихся условиях окружающей среды.

Достоинства бесполого размножения – дочерние особи приспособлены к определенным стабильным условиям, процесс идет очень быстро.

Что такое размножение

Размножение или репродукция, присущая всем живым существам функция воспроизведения себе подобных. В отличие от всех других жизненно важных функций организма, размножение направлено не на поддержание жизни отдельной особи, а на сохранение ее генов в потомстве и продолжение рода - тем самым на сохранение генофонда популяции, вида, семейства и т.д.

Молекулярную основу процессов размножения всех организмов составляет способность ДНК к самоудвоению. В результате генетический материал воспроизводится в строении и функционировании дочерних организмов.

Размножение происходит на следующих уровнях организации:

Молекулярно-генетическом (репликация ДНК),

Клеточном (амитоз, митоз),

Организменном.

Биологическое значение размножения

Способность к размножению – одна из важнейших особенностей живого. В процессе размножения происходит передача генетического материала от родителей потомкам. Значение размножения для вида в целом состоит в непрерывном восполнении количества особей данного вида, умирающих по различным причинам. Кроме того, размножение позволяет в благоприятных условиях увеличить количество особей.

Выделяют два типа размножения - бесполое и половое.

Бесполый тип размножения более прост и его биологическая роль в процессе эволюции меньше, чем полового.

Бесполое размножение широко распространено у бактерий, водорослей. При нем происходит деление бактерии, представляющей собою организм, состоящий из одной клетки, на две новые клетки.

Бесполое размножение может осуществляться также путем побегов, корневищ, отводков, что распространено у многих высших растений. В садоводстве и полеводстве часто используют этот способ для быстрого размножения полезных растений. Биологическая наука достигла таких успехов, когда с помощью отдельных клеток или кусочка ткани можно быстро размножить ценные растения. Вегетативное размножение позволяет быстро получить большое количество посадочного материала и высокие урожаи. Потомство получается однородным по своим наследственным свойствам . Это как бы бесчисленные копии одного единственного родителя. Эта особенность часто используется в селекции, когда хотят сохранить какие-либо полезные качества, широко используются в практике сельского хозяйства, для сохранения ценных сортов.

Бесполое размножение простым делением встречается, но значительно реже, и у животных (у одноклеточных животных вроде амебы и инфузорий, у некоторых червей).

При вегетативном размножении жизнь организма, из которого образовалось потомство, как бы продолжается, а не возникает заново. Так, поставленная в воду срезанная ветка даст корни и будет продолжать развитие с того состояния, в котором находилось дерево, с которого она была взята. Ветка, срезанная с дерева весной, распустит почки и будет зеленеть; ветка, срезанная осенью, даст опадание листьев.

Более сложный и биологически более полезный в эволюционном отношении тип размножения - половой. Биологическую роль полового размножения вскрыл впервые Ч. Дарвин. Под влиянием идеалистических теорий менделизма-морганизма-вейсманизма эти исследования Дарвина были забыты многими биологами. И только благодаря работам наших отечественных ученых К. А. Тимирязева и особенно И. В. Мичурина и академика Т. Д. Лысенко труды Дарвина по оплодотворению были углублены и достигнуто правильное понимание значения полового размножения и биологической сущности процесса оплодотворения.

Биологическое значение полового размножения в процессе эволюции заключается в том, что оно создает более сильное, более жизненное потомство, чем потомство, получаемое от бесполого размножения.

Как мы уже говорили, организм, полученный от вегетативного размножения, продолжает тот этап развития, в котором находился организм, отделивший этот новый, т. е. срезанная ветка дерева, превращенная в самостоятельный организм, будет иметь тот же возраст и тот же этап развития, какие имело дерево, от которого ее отделили. У потомства, полученного от вегетативного размножения, обнаруживается понижение жизненности и как бы преждевременное одряхление.

Интересным примером этого служит работа Т. Д. Лысенко с пирамидальным тополем. Это быстро растущее дерево, очень нужное для полезащитных насаждений, имеет один большой недостаток - оно быстро стареет и начинает суховершинить. Академик Т. Д. Лысенко вскрыл причину этого и нашел меры борьбы. Ранняя суховершинность, т. е. раннее старение объясняется тем, что пирамидальный тополь размножается у нас ветками и черенками, т. е. вегетативным бесполым путем. Разводя его так многие столетия, мы получаем с каждым поколением все менее жизненные организмы. Половым же путем тополь не размножался, так как деревьев, имеющих женские цветки, в Советском Союзе оказалось очень мало, а деревья с мужскими цветками после цветения не могут оставить потомства. Вот почему размножения тополя семенами не происходило.

По заданию академика Т. Д. Лысенко были отысканы редко встречающиеся экземпляры деревьев с женскими цветками. Было произведено искусственное опыление этих цветков пыльцой и получены семена. Из полученных семян выращены были еще перед Великой Отечественной войной тополевые сеянцы, обладающие крепостью, скорым ростом и выносливостью. Такое потомство от полового размножения тополя будет более долголетним и не имеет преждевременной суховершинности.

Из этого примера видно, что половое размножение имеет большое значение в создании крепкого, жизненного потомства. Это означает, что половое размножение биологически полезно в жизни животных и растений.

Кроме тогополовое размножение увеличивает наследственную изменчивость и предоставляет материал для естественного отбора. В результате повышаются приспособительные возможности организмов к меняющимся условиям внешней среды. Оно обеспечивает биологическое разнообразие видов, повышение их адаптивных возможностей и эволюционных перспектив.

Типы размножения

Все разнообразие способов размножения можно разделить на два основных типа: бесполое (его вариант – вегетативное) размножение и половое размножение.

В бесполой форме размножение осуществляется родительской особью самостоятельно, без обмена наследственной информацией с другими особями. Дочерний организм образуется путем отделения от родительской особи одной или нескольких соматических (телесных) клеток и дальнейшего их размножения посредством митоза. Потомство наследует признаки родителя, являясь в генетическом отношении его точной копией. Различают несколько типов бесполого размножения.

В половом размножении, в отличие от бесполого, участвует пара особей. Их половые клетки (гаметы) несут гаплоидные наборы хромосом. В процессе оплодотворения гаметы сливаются и образуют диплоидную оплодотворенную яйцеклетку (зиготу), которая дает начало новому организму.

Одна из гомологичных хромосом соматической клетки достается от «мамы», а другая - от «папы». В результате части генетического материала родительских особей объединяются, и в потомстве появляются новые комбинации генов. Разнообразие генетического материала позволяет потомству успешнее приспосабливаться к изменяющимся внешним условиям. В обогащении наследственной информации состоит главное преимущество полового размножения, его основное биологическое значение.

Формы бесполого размножения

Различают несколько форм бесполого размножения:

Простое деление . Особенно распространено бесполое размножение у бактерий и синезеленых водорослей. Единственная клетка этих безъядерных организмов разделяется пополам или сразу на несколько частей. Каждая часть является целостным функциональным организмом. Простым делением размножаются амебы, инфузории, эвглены и другие простейшие. Разделение происходит посредством митоза, поэтому дочерние организмы получают от родительских тот же набор хромосом.

Почкование . Этот тип размножения используют как одноклеточные, так и некоторые многоклеточные организмы: дрожжи (низшие грибы), инфузории, коралловые полипы. Почкование у пресноводных гидр происходит следующим образом. Сначала на стенке гидры образуется вырост, который постепенно удлиняется. На его конце появляются щупальца и ротовое отверстие. Из почки вырастает маленькая гидра, которая отделяется и становится самостоятельным организмом. У других существ почки могут оставаться на теле родителя.

Фрагментация. Ряд плоских и кольчатых червей, иглокожие (морские звезды) могут размножаться посредством расчленения тела на несколько фрагментов, которые затем достраиваются до целостного организма. В основе фрагментации лежит способность многих простых существ к регенерации утраченных органов. Так, если от морской звезды отделить луч, то из него вновь разовьется морская звезда. Гидра способна восстановиться из 1/200 части своего организма. Обычно размножение фрагментацией происходит при повреждениях. Самопроизвольную фрагментацию осуществляют только плесневые грибы и некоторые морские кольчатые черви.

Спорообразование . Родоначальницей нового организма может стать специализированная клетка родительского существа - спора. Такой способ размножения характерен для растений и грибов. Размножаются спорами многоклеточные водоросли, мхи, папоротники, хвощи и плауны. Споры представляют собой клетки, покрытые прочной оболочкой, защищающей их от чрезмерной потери влаги и устойчивой к температурным и химическим воздействиям. Споры наземных растений пассивно переносятся ветром, водой, живыми существами. Попадая в благоприятные условия, спора раскрывает оболочку и приступает к митозу, образуя новый организм. Водоросли и некоторые грибы, обитающие в воде, размножаются зооспорами, снабженными жгутиками для активного передвижения.

Одноклеточное животное малярийный плазмодий (возбудитель малярии) размножается посредством шизогонии - множественного деления . Сначала в его клетке путем делений формируется большое количество ядер, затем клетка распадается на множество дочерних.

Вегетативное размножение . Этот вид бесполого размножения широко распространен у растений. В отличие от спорообразования, вегетативное размножение осуществляется не особыми специализированными клетками, а практически любыми частями вегетативных органов. Многолетние дикорастущие травы размножаются корневищами (осот дает до 1800 особей/м2 почвы), земляника - усами, а виноград, смородина и слива - отводками. Картофель и георгины используют для размножения клубни - видоизмененные подземные участки корня. Тюльпаны и лук размножаются луковицами. У деревьев и кустарников укореняются с образованием нового растения побеги - черенки, а у бегонии роль черенков способны выполнять листья. Черенками размножают малину, сливу, вишню и розы. На корнях и пнях деревьев образуется поросль, которая затем превращается в самостоятельные растения.

Клонирование. Как уже говорилось, получение идентичных потомков при помощи бесполого размножения называют клонированием. В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека – однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных.

Формы полового размножения

У животных чаще встречается раздельнополость, т. е. наличие мужских и женских особей (самцов) и (самок), которые нередко различаются по размерам и внешнему виду (половой диморфизм). Половые клетки образуются в специальных органах - половых железах. Мелкие, снабженные жгутиком, подвижные сперматозоиды формируются в семенниках, а крупные неподвижные яйцеклетки (яйца) - в яичниках.Процесс оплодотворения у многоклеточных организмов, как и у одноклеточных, заключается в слиянии мужских и женских гамет. Как правило, затем сразу же происходит и слияние их ядер с образованием диплоидной зиготы (оплодотворенной яйцеклетки)

Сформировавшаяся зигота объединяет в своем ядре гаплоидные наборы хромосом родительских организмов. У развивающегося из зиготы дочернего организма происходит комбинирование наследственных признаков обоих родителей.

У многоклеточных организмов различают наружное оплодотворение (при слиянии гамет вне организма) и внутреннее оплодотворение , происходящее внутри родительского организма. Наружное может осуществляться только в водной среде, поэтому оно наиболее широко встречается у водных организмов (водорослей, кишечнополостных, рыб). Наземным организмам чаще свойственно внутреннее оплодотворение (высшие семенные растения, насекомые, высшие позвоночные животные).

Нетипичное половое размножение

Партеногенез (девственное размножение ). Открыт в середине XVIII в. швейцарским натуралистом Ш. Бонне. Партеногенез встречается у растений и животных. При нем развитие дочернего организма осуществляется из неоплодотворенной яйцеклетки. Причем образующиеся дочерние особи, как правило, либо мужского пола (трутни у пчел), либо женского (у кавказских скальных ящериц), кроме того, могут рождаться потомки обоих полов (тли, дафнии). Количество хромосом у партеногенетических организмов может быть гаплоидным (самцы пчел) или диплоидным (тли, дафнии).

Значение партеногенеза:

1) размножение возможно при редких контактах разнополых особей;

2) резко возрастает численность популяции, так как потомство, как правило, многочисленно;

3) встречается в популяциях с высокой смертностью в течение одного сезона.

Виды партеногенеза:

1) облигатный (обязательный) партеногенез . Встречается в популяциях, состоящих исключительно из особей женского пола (у кавказской скалистой ящерицы). При этом вероятность встречи разнополых особей минимальна (скалы разделены глубокими ущельями). Без партеногенеза вся популяция оказалась бы на грани вымирания;

2) циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц - крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких - самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки; факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных - самцы (трутни). У этих видов партеногенез существует для регулирования численного соотношения полов в популяции.

Выделяют также естественный (существует в естественных популяциях) и искусственный (используется человеком) партеногенез. Этот вид партеногенеза исследовал В. Н. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или погружая на несколько секунд в серную кислоту (известно, что шелковую нить дают только самки).

Гиногенез (у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.

Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония . Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одного зародыша на стадии бластулы равномерно разделяется между 4-8 зародышами, каждый из которых в дальнейшем дает полноценную особь. К этой категории явлений можно отнести появление однояйцовых близнецов у человека.

Что такое мейоз

Мейоз - особый тип деления клеток, в результате которого образуются половые клетки.
В отличии от митоза, при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое .
Процесс мейоза состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление).
Удвоение ДНК и хромосом происходит только перед мейозом I .
В результате первого деления мейоза, называемого редукционным , образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2n) , набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (n) , набор хромосом и соответственно вдвое меньшее количество ДНК.

Биологическая роль мейоза

Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число.

При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянство для каждого вида полных диплоидных наборов хромосом и постоянное количество ДНК.

Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

o отцовской хромосомой;

o материнской хромосомой;

o отцовской с участком материнской;

o материнской с участком отцовской.

Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости.
В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.

Отличие мейоза от митоза

Все живое имеет клеточное строение. Клетки живут: растут, развиваются и делятся. Их деление может происходить различными способами: в процессе митоза или мейоза. Оба этих способа имеют одинаковые фазы деления, предваряя эти процессы, происходят спирализация хромосом и самостоятельное удвоение в них молекул ДНК. Рассмотрим, в чем заключается отличие митоза от мейоза.

Митоз является универсальным способом непрямого деления клеток, имеющих ядро, то есть клеток животных, растений, грибов. Слово «митоз» произошло от греческого «митос», что означает «нить». Его еще называют вегетативным способом размножения или клонированием.

Мейоз – это также способ деления аналогичных клеток, но число хромосом в ходе мейоза уменьшается в два раза. Основой происхождения названия «мейоз» стало греческое слово «меёсис», то есть «уменьшение».

Процесс деления

В процессе митоза каждая хромосома расщепляется на две дочерние и распределяется по двум вновь образовавшимся клеткам. Жизнь образовавшихся клеток может развиваться по-разному: обе могут продолжать деление, делится дальше только одна клетка, в то время, как другая теряет такую способность, обе клетки утрачивают способность делиться.

Мейоз состоит из двух делений. В первом делении число хромосом становится меньше в два раза, из диплоидной клетки получаются две гаплоидные, при этом в каждой хромосоме имеется по две хроматиды. Во втором делении число хромосом не уменьшается, лишь образуется четыре клетки с хромосомами, которые содержат по одной хроматиде.

Конъюгация

В процессе мейоза в первом делении происходит слияние гомологичных хромосом, при митозе любые виды спаривания отсутствуют.

Выстраивание

В процессе митоза удвоенные хромосомы выстраиваются по экватору по раздельности, в то время как при мейозе аналогичное выстраивание происходит парами.

Итог процесса деления

В результате митоза происходит образование двух соматических диплоидных клеток. Важнейшим аспектом этого процесса является то, что наследственные факторы в ходе деления не изменяются.

Итогом мейоза является появление четырех половых гаплоидных клеток, наследственность которых изменена.

Размножение

Мейоз происходит в созревающих половых клетках и является основой полового размножения.

Митоз является основой бесполого размножения соматических клеток, причем это единственный способ их самовосстановления.

Биологическое значение

В процессе мейоза поддерживается постоянное число хромосом и кроме того происходит появление новых соединений наследственных задатков в хромосомах.

При митозе происходит удвоение хромосом в ходе их продольного расщепления, которые равномерно распределяются по дочерним клеткам. Объем и качество исходной информации не меняется, и сохраняется в полной мере.

Митоз является основой индивидуального развития всех многоклеточных организмов.

Таким образом, основные отличия митоза от мейоза:

  1. Митоз и мейоз – это способы деления клеток, содержащих в своем составе ядро.
  2. Митоз происходит в соматических клетках, мейоз – в половых.
  3. При митозе происходит одно деление клетки, мейоз предполагает деление в две стадии.
  4. В результате мейоза происходит уменьшение числа хромосом в 2 раза, в процессе митоза – сохранение исходного числа хромосом в дочерних клетках.

Генетические аспекты мейоза

Процессы деления клеток лежат в основе роста и размножения любых организмов, развития и преемственности жизни на Земле. У многоклеточных организмов с половым размножением различают два типа деления клеток: митоз и мейоз. Хотя известны они давно, их молекулярные механизмы во многом еще далеки от понимания. Даже у цитологов, изучающих структуру и функционирование клеток, есть разногласия о функциях ряда структур, которые появляются в процессе клеточного деления.

Центральную роль в обоих типах деления играет самокопирование и распределение по дочерним клеткам носителей генов – хромосом. У растений и животных хромосомы представляют собой гигантские линейные молекулы ДНК, связанные с белками. Именно ДНК обладает свойством самокопирования, или репликации. Хромосомы не одинаковы по составу ДНК. Каждая из них содержит лишь часть общего набора генов. Число и структура хромосом постоянны у большинства особей одного вида. У высших организмов набор хромосом парный – половина от матери, другая – от отца. Такие пары называют гомологичными.

Суть митоза состоит в репликации (удвоении) и точном распределении между дочерними клетками набора хромосом клеточного ядра. Так обеспечивается воспроизведение материальных носителей наследственной информации. В случае же мейоза происходит сокращение вдвое (редукция) числа хромосом. Образующиеся в результате мейотического деления половые клетки, или гаметы, несут лишь по одному гомологу каждой пары хромосом. Именно особенности мейоза лежат в основе законов наследования Менделя и хромосомной теории наследственности. Независимое наследование разных генов и их сочетание у потомков основано на независимом расхождении разных пар гомологичных хромосом в гаметы. Кроме того, в мейозе могут обмениваться гены, лежащие и в одной хромосоме.

Интерес к мейозу особенно возрос в конце 60-х гг., когда выяснилось, что одни и те же ферменты могут принимать участие в процессах воспроизведения ДНК, обмена ее отдельных участков, восстановления повреждений. В последнее время ряд биологов развивает оригинальную идею, заключающуюся в том, что мейоз у высших организмов гарантирует стабильность генетической индивидуальности, т.к. в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на полную идентичность и восстановление повреждений сразу в обеих нитях.

Изучение мейоза связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветви знания – цитогенетики, тесно соприкасающейся с молекулярной биологией и генной инженерией. Селекционеров всегда манила перспектива объединить, например, в одном растении полезность культурной пшеницы и продуктивность и устойчивость к внешним повреждающим факторам дикого пырея. Но эта заманчивая идея создания гибридных хромосом натолкнулась на сито мейоза. В мейозе у гибридных растений хромосомы расходились как попало, и в итоге плодовитость падала. Стало ясно, что необходимо выяснить молекулярный механизм гибридизации и то, каким образом контролируется поведение хромосом.

Генетика обладает надежным инструментом изучения сложных процессов путем выявления изменений генов (мутаций), нарушающих ход отдельных стадий. Объектом, удобным с точки зрения цитологии и генетики для систематического поиска и анализа мутаций, нарушающих мейоз (далее в тексте – мей-мутаций ), оказалась кукуруза. Это растение, прекрасно изученное и цитологами и генетиками, имеет всего 10 пар относительно крупных хромосом. Кроме того, у кукурузы уже было найдено несколько мей-мутаций.

Поиск новых мутаций был основан на представлении о мейозе как универсальном биологическом процессе, свойственном всем эукариотам. В результате с единых позиций были систематизированы все имевшиеся разрозненные данные о проявлении мей-мутаций у разных объектов – дрожжей, растений, насекомых и человека, что позволило сформулировать концепцию генного контроля мейоза . Но прежде чем изложить ее принципы, необходимо хотя бы в самых общих чертах описать сложный «танец» хромосом при мейотическом редукционном делении клетки. В этом «танце» цитологи выделяют четыре основных фигуры, или фазы: профаза, метафаза, анафаза и телофаза. Суть мейоза можно кратко выразить так: одна репликация хромосом приходится на два последовательных деления клетки. В итоге получаются четыре дочерние половые клетки, которые имеют вдвое меньшее число непарных хромосом (рис. 1).

Центральное событие начальных этапов мейоза – таинственный процесс узнавания друг другом гомологичных хромосом, их попарное сближение и тесное соприкосновение – синапсис (от греч. «соединение, связь»). В ходе синапсиса гомологи обмениваются фрагментами. В световом микроскопе последствия этого обмена видны как перекресты, или хиазмы (рис. 2).

После синаптического танца и обмена фрагментами хромосомы выстраиваются на экваторе клетки. В это время они напоминают пары лыж, сцепленных в районе креплений. Область креплений у хромосомы носит название центромер. Затем в клетке появляется специальный нитевой аппарат, идущий от одного полюса клетки к другому и получивший образное название веретено. Часть нитей веретена в метафазе прикрепляется к центромерам и растаскивает их в разные стороны к полюсам (стадия анафазы). Хромосома без центромеры-крепления не может существовать и сразу же утрачивается, как чемодан без ручки. Точное расхождение гомологичных пар к противоположным полюсам лежит в основе уменьшения их числа вдвое.

Рис. 1. Схема мейоза (для простоты показана одна пара хромосом)

Во втором делении мейоза центромеры разделяются, и образовавшиеся ранее (до первого деления) копии в каждой паре просто расходятся, после чего образуются еще две дочерние клетки, и в итоге их получается четыре). Второе деление мейоза в принципе соответствует митозу. Таков в самом общем виде сценарий основных цитологических картин мейоза у самых разных организмов

Рис. 2. Хиазмы в результате трех отдельных перекрестов хроматид обеих хромосом

Механизмы оплодотворения

Процесс проникновения сперматозоидов в яйцеклетку называется оплодотворением, в результате чего восстанавливается диплоидный набор хромосом, характерный для того или иного вида животных.

Встреча гамет происходит либо внутри половых путей самки (внутреннее оплодотворение ), либо во внешней среде, например, в воде (наружное оплодотворение ). Яйцеклетка окружена несколькими оболочками, структура которых такова, что только сперматозоид собственного вида может попасть в яйцеклетку. После оплодотворения оболочки яйцеклетки меняются и другие сперматозоиды уже не могут в нее проникнуть.

Сперматозоид приближается к яйцеклетке головкой вперед. В случае если оболочка яйцеклетки мягкая, навстречу ему приподнимается протоплазматический вырост яйца – воспринимающий бугорок, который и втягивает спермий в глубь яйца. После этого почти мгновенно над воспринимающим бугорком появляется тонкая желточная оболочка оплодотворения, наглухо закрывающая сюда доступ остальным спермиям. При плотных оболочках спермии проникают в яйцеклетки через одно из микропилярных отверстий. В процессе оплодотворения различают три фазы.

Первая фаза – сближение . Как при наружном (у рыб, амфибий), так и при внутреннем (у рептилий, птиц и млекопитающих) оплодотворении сперматозоиды в результате хемотаксиса в условиях слабо щелочной среды очень быстро перемещаются по направлению к яйцеклеткам. Смещение рН в кислую сторону, наоборот, парализует спермии. Сперматозоиды млекопитающих обладают способностью двигаться против тока жидкости, направленного из яйцевода, где происходит оплодотворение, в матку. Сближению половых клеток способствуют: перистальтика маточных труб и мерцательное движение ресничек эпителия маточных труб, а также определенная разность потенциалов между положительной электрозарядностью для семенной жидкости и отрицательной для яйцеклетки.

Вторая фаза – проникновение сперматозоида через оболочки яйцеклетки. Контактное взаимодействие гамет наступает, когда сперматозоид сближается с яйцеклеткой. У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называется моноспермией. У беспозвоночных животных, рыб, амфибий, рептилий и птиц возможна полиспермия, когда в яйцеклетку проникает несколько сперматозоидов, но в слиянии ядер (оплодотворении) все равно принимает участие только один. В цитоплазму яйцеклетки проникает головка, шейка и часть хвостового отдела. Проникновение сперматозоида значительно усиливает процессы внутриклеточного обмена, что связано с повышением дыхания и активизацией ферментативных систем яйцеклетки.

Третья фаза – образование мужского и женского пронуклеусов с последующим слиянием их . При этом у многих видов животных ядра мужской и женской клеток во время сближения переходят в состояние метафазы. Затем хромосомы обоих ядер образуют единую материнскую «звезду», но уже с удвоенным (диплоидным) числом хромосом. В других случаях ядра вначале сливаются и затем переходят в состояние кариокинеза. Одновременно внесенные сперматозоидом центриоли расходятся к полюсам клетки, и этот одноклеточный зародыш – зигота вступает во второй период эмбрионального развития – период дробления.

Оплодотворение у животных . Населяющие планету живые организмы различаются строением, образом жизни, средой обитания. Одни из них производят очень много половых клеток, другие - относительно мало. Существует разумная закономерность: чем меньше вероятность встречи мужской и женской гамет, тем большее число половых клеток продуцируют организмы. Рыбам и амфибиям свойственно внешнее осеменение. Их гаметы попадают в воду, где и происходит оплодотворение. Многие гаметы погибают или поедаются другими существами, поэтому эффективность внешнего осеменения очень низка. Для сохранения вида рыбам и амфибиям необходимо производить огромное количество гамет (треска мечет около 10 млн. икринок).

Высшие животные и растения используют внутреннее осеменение. В этом случае процесс оплодотворения и образующаяся зигота защищены организмом матери. Вероятность оплодотворения значительно повышается, поэтому и продуцируется, как правило, лишь несколько яйцеклеток. Но сперматозоидов все же производится достаточно много, их избыточное количество необходимо для создания вокруг яйцеклетки определенной химической среды, без которой оплодотворение невозможно. Яйцеклетка имеет механизмы, препятствующие проникновению лишних сперматозоидов. После того, как проник первый, она выделяет вещество, подавляющее подвижность мужских гамет. Даже если их в яйцеклетку успевает проникнуть несколько, то с яйцеклеткой сливается только один, остальные гибнут.

Размножение - это свойство живых организмов воспроизводить себе подобных, обеспечивая непрерывность и преемственность жизни в ряду поколений.

Р. обеспечивает самовоспроизведение живых организмов, необходимое для существования вида. В основе размножения лежит генетическая информация, зашифрованная в виде ДНК.

    Формы бесполого размножения, их цитологические механизмы и биологическая роль.

Бесполое размножение - форма размножения, при которой участвует один организм и все дочерние организмы имеют такой же генетический материал.

У одноклеточных:

Деление надвое

Почкование. В этом случае происходит митотическое деление ядра. Одно из образовавшихся ядер перемещается в формирующееся локальное выпячивание материнской клетки, а затем этот фрагмент отпочковывается. Дочерняя клетка существенно меньше материнской, и ей требуется некоторое время для роста и достраивания недостающих структур, после чего она приобретает вид, свойственный зрелому организму.

Шизогония – множественное деление

Спорообразование. Споры во многих случаях образуются путём митоза(митоспоры), причём иногда (особенно у грибов) в огромных количествах; при прорастании они воспроизводят материнский организм.

У многоклеточных:

Вегетативное размножение. осуществляется путем отделения от организма его части, состоящей из большего или меньшего числа клеток. Из них развивается взрослый организм.

Полиэмбриония

Фрагментация

Спорообразование

Почкование

При бесполом размножении обеспечивается быстрое образование многочисленного потомства с теми же признаками, что и у родителей. Что полезно в благоприятных условиях, например, летом у водорослей.

    Биологическое значение и формы полового разможения.

Половое размножение - процесс у большинства эукариот, связанный с развитием новых организмов из половых клеток, участвуют 2 родительские особи, образуются спец. половые клетки – гаметы, гаплоидное количество хромосом наследственного материала, при слиянии образуется зигота.

У одноклеточных:

Конъюгация (клетки отделились, подошли друг к другу, и слились в зиготу)

У многоклеточных:

    Наружное оплодотворение

Внутреннее оплодотворение

    Партеногенез: андрогенез (новый организм развивается из яйцеклетки с мужским пронуклеосом) и геногенез (новый организм развивается из яйцеклетки с женским пронуклеосом)

Биологическое значение полового размножения заключается не только в самовоспроизведении особей, но и в обеспечении биологического разнообразия видов, их адаптивных возможностей и эволюционных перспектив. Это делает половое размножение биологически более прогрессивным, чем бесполое.

    Эволюция полового размножения.

Этапы эволюции полового размножения:

    Изогамный. Половые клетки, имеющий одинаковое строение.

    Гетерогамный. Отличаются морфологическими признаками.

    Появление специальных органов, где происходит созревание половых клеток.

    Переход от внешнего оплодотворения к внутреннему.

=>развитие внутренних и наружных половых органов.

    Понятие о мейозе и его биологическая роль.

Мейоз – особый тип деления клеток, в результате которого формируются половые клетки – гаметы, содержащие гаплоидное количество хромосом и наследственного материала.

1 деление – редукционное (уменьшение кол-ва хромосом в 2 раза)

2 деление – эквационное (уменьшение наследственного материала)

Биологическое значение мейоза:

При мейозе происходит редукция числа хромосом и редукция наследственного материала

При мейозе происходит перекомбинация генетического материала, увеличивается резерв наследственной изменчивости будущего потомства

Комбинативная изменчивость: а) при кроссинговере, б) случайным расхождением хромосом в А1.

Мейоз является одним из ключевых механизмов наследственности

    Характеристика фаз 1 и 2 мейотических делений.

Профаза 1 2 n 4 c – 90% всего мейоза.

1. Лептотена – спирализация хромосом

2. Зиготена – процесс конъюгации – попарное соединение гомологичых хромосом

3. Пахитена – кроссинговер – обмен между гомологичными участками хромосом

4. Диптотена – разделение синаптонимального комплекса, связаны в местах хиазмы – где прошел процесс кроссинговера

5. Диакинез – максимальное отталкивание хромосом друг от друга, но они остаются связаны в областях хиазм.

Иногда между 4 и 5 бывает диктиетена. Длится от 12 до 50 лет. Женская особенность, только у человека.

Метафаза 1 2 n 4 c

Биваленты (пары гомологичных хромосом) выстраиваются случайным образом в экваториальной плоскости. Образуется метафазная пластинка. Образование нитей веретена деления, к каждой хромосоме крепится только одна нить, происходит разрушение хиазм.

Анафаза 1 2 n 4 c (n2c+n2c у каждого полюса)

Расщепление гомологичных хромосом и расхождение их к полюсам клетки.

Телофаза 1 n 2 c

В результате происходит образование двух клеток, в каждой из которых будет половинный набор наследственного материала n2c

Профаза 2 n 2 c

Метафаза 2 n 2 c

Анафаза 2 nc + nc

Телофаза 2 nc

    Динамика количества хромосом ДНК в мейотическом делении.+

    Отличие мейоза и митоза.

Отличия мейоза от митоза по итогам

1. После митоза получается две клетки, а после мейоза – четыре.

2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

3. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

4. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

Отличия мейоза от митоза по ходу

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

    Биологическое значение и стадии гаметогенеза.

Гаметогенез – это процесс образования половых клеток. Сперматогенез и овогенез.

1 стадия – размножение

2 стадия – роста (интерфаза 1 мейоза)

3 стадия – созревания (1 и 2 деления)

4 стадия – формирования

В с тадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.

Так как способом размножения клеток-предшественниц женских и мужских гамет является митоз, то овогоний и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. В ходе митотического цикла их хромосомы имеют либо однонитчатую (после митоза и до завершения синтетического периода интерфазы), либо двунитчатую (постсинтетический период, профаза и метафаза митоза) структуру в зависимости от количества биспиралей ДНК. Если в одинарном, гаплоидном наборе число хромосом обозначить как п, а количество ДНК - как с , то генетическая формула клеток в стадии размножения соответствует 2п 2с до S-периода и 2n 4c после него.

На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые. Одна часть накапливаемых веществ представляет собой питательный материал (желток в овоцитах), другая - связана с последующими делениями. Важным событием этого периода является репликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2n 4с .

Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное, которые вместе составляют мейоз (см. разд. 5.3.2). После первого деления образуются сперматоциты и овоциты II порядка (формула n 2с ), а после второго - сперматиды и зрелая яйцеклетка (пс ).

В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка - одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала - желтка.

Процесс сперматогенеза завершается стадией формирования, или спермиогенеза . Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра, образуя акросомный аппарат, играющий большую роль в оплодотворении. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.

    Характеристика сперматогенеза и овогенеза.

Овогенез

Период размножения. В этот период овогонии делятся митотическим путем.

Период роста. Половые клетки в этом периоде называются овоцитами первого порядка. Они теряют способность к митотическому делению и вступают в профазу I мейоза. В этот период осуществляется рост половых клеток

Период созревания . Созревание овоцита - это процесс последовательного прохождения двух делений мейоза (делений созревания ). Как уже говорилось выше, при подготовке к первому делению созревания овоцит длительное время находится на стадии профазы I мейоза, когда и происходит его рост.

Из двух делений созревания первое у большинства видов является редукционным, так как именно в ходе этого деления гомологичные хромосомы расходятся по разным клеткам. Таким образом, каждая из разделившихся клеток приобретает половинный (гаплоидный) набор хромосом.

Сперматогенез

    Онтогенетические особенности сперматогенеза и овогенеза у человека.

Особенности сперматогенеза у людей: начинается в 12-14 лет. Из одной спермагонии образуется 4 сперматозоида. Ежедневно . Период длится 2,5 месяца.

((Сперматогенез у человека в норме начинается в пубертатном периоде (около 12 лет) и продолжается до глубокой старости. Продолжительность полного сперматогенеза у мужчин составляет примерно 73-75 дней . Один цикл зародышевого эпителия составляет приблизительно 16 дней))

Итог овогенеза: из 1 овогонии только 1 яйцеклетка. Овогенез начинается в зародышевом периоде (эмбриональном развитии). На стадии овоцита 2 порядка он останавливается(эмбр.)

Продолжается в подростковом периоде, цикличность с частотой 28 дней,образуется 1 яйцеклетка.

6-8 млн овогонии, к моменту рождения 1-2 млн.

Онтогенетическое развитие человека можно охарактеризовать рядом общих особенностей: - непрерывность – рост отдельных органов и систем организма человека не бесконечен, он идет по так называемому ограниченному типу. Конечные величины каждого признака обусловлены генетически, т. е. существует норма реакции; - постепенность и необратимость; непрерывный процесс развития можно разделить на условные стадии – периоды, или этапы, роста. Пропустить какой-либо из этих этапов невозможно, как нельзя в точности вернуться к тем особенностям строения, которые уже проявлялись на предыдущих стадиях; - цикличность; хотя онтогенез является процессом непрерывным, темпы развития (скорость изменений признаков) могут существенно различаться во времени. У человека существуют периоды активизации и торможения роста. Существует цикличность, связанная с сезонами года (например, увеличение длины тела происходит в основном в летние месяцы, а веса – осенью), а также суточная и ряд других; - гетерохрония, или разновременность (основа алло-метричности) – неодинаковая скорость созревания разных систем организма и разных признаков в пределах одной системы. Естественно, что на первых этапах онтогенеза созревают наиболее важные, жизненно необходимые системы; - чувствительность к эндогенным и экзогенным факторам; темпы роста ограничиваются или активизируются под воздействием широкого спектра экзогенных факторов среды. Но их воздействие не выводит процессы развития за границы широкой нормы реакции, определенной наследственно. В этих пределах процесс развития удерживается эндогенными регуляторными механизмами. В этой регуляции существенная доля принадлежит собственно генетическому контролю, реализованному на уровне организма благодаря взаимодействию нервной и эндокринной систем (нейроэндокринная регуляция); - половой диморфизм – ярчайшая характеристика развития человека, проявляющаяся на всех этапах его онтогенеза. В очередной раз напомним, что различия, обусловленные «фактором пола», настолько существенны, что игнорирование их в исследовательской практике нивелирует значение даже самых интересных и перспективных работ. Еще одна фундаментальная характеристика онтогенеза – индивидуальность этого процесса. Динамика онтогенетического развития отдельного человека неповторима.

    Морфо-функциональная организация половых клеток у человека.

Формирование половых клеток. Приобретение определенной формы и размеров

Особенности строения

1.Яйцеклетка от 0,01 мм до 23см.

    Обеспечение развития зародыша питательными веществами.

    Хранение генетической информации.

    Крупные и неподвижные.

    Крупное ядро с гаплоидным набором хромосом.

2. Сперматозоид 70 мкм.

    Внесение генетической информации.

    Стимуляция развития яйцеклетки.

    Маленькие и подвижные, есть головка, шейка, хвостик.

    Небольшое ядро с гаплоидным набором хромосом.

    Аппарат Гольджи преобразован в акросому, расположенную на переднем конце головки, выделяющую ферменты, растворяющие оболочку яйцеклетки, митохондрии упаковываются вокруг жгутика, образуя шейку.

    Нет запаса питательных веществ.

    Биологическая роль, этапы и механизмы оплодотворения.

Оплодотворение – процесс слияния женских и мужских половых клеток, в результате чего образуется зигота.

Биологическое значение:

1)Восстанавливается диплоидность

2) Происходит объединение наследственных задатков от матери и отца

Механизмы оплодотворения:

    Цитологический (слияние) 60млн в 1 мл эукулята для оплодотворения.

    Генетический (слияние гаплоидных наборов наследственного материала)

    Химический

    Иммунологический

    Физиологический

    Бесплодие и многоплодие, их биологические механизмы.

    Половой диморфизм: генетический, морфофизиологический, эндокринный и поведенческие аспекты.

Полово́й диморфи́зм - анатомические различия между самцами и самкамиодного и того же биологическог вида, не считая половых органов. Половой диморфизм может проявляться в различных физических признаках

Размножение обеспечивает самовоспроизведение живых организмов, необходимое для существования вида. В основе размножения лежит генетическая информация, зашифрованная в ДНК.

Размножение может быть бесполое и половое. При половом размножении имеет место половой процесс, заключающийся в обмене клеток генетическим материалом. Чаще всего происходит образование специализированных половых клеток с гаплоидным (одинарным) набором хромосом - гамет с последующим их слиянием - оплодотворением.

Бесполое размножение может происходить путем митоза (у микроорганизмов и других одноклеточных), спорами (у папоротников), почкованием (у гидры), частями организма и вегетативными органами (вегетативное размножение растений). При бесполом размножении обеспечивается быстрое образование многочисленного потомства с теми же признаками, что и у родителей. Что полезно в благоприятных условиях, например, летом у водорослей.

Половое размножение приводит к образованию новых сочетаний генов, что повышает шанс на выживание части потомства при изменении условий среды. Половое размножение делает возможным естественный отбор на основе наследственной изменчивости - основной движущий фактор эволюции.

Человек применяет вегетативное размножение плодовых растений (черенкование смородины, прививка яблони, корневые отпрыски у малины, усы у земляники) для сохранения ценных качеств сорта, которые будут утеряны при половом размножении. Половое размножение у таких растений незаменимо при выведении новых сортов.

При скрещивании разных сортов растений, пород животных возникает явление гетерозиса - гибридной силы. Такое потомство обладает повышенной выносливостью (мул - гибрид осла и кобылы), быстрее растут (бройлерные цыплята), более урожайны (гибриды F1 у огурцов).

2. Позвоночные животные, их классификация. Усложнение млекопитающих в процессе эволюции. Определите место вида лисицы обыкновенной в системе животного мира (тип, класс, отряд, семейство, род).

Тип Хордовых включает подтип Черепные, или Позвоночные. В школьном курсе изучают классы:

  1. Хрящевые рыбы,
  2. Костные рыбы,
  3. Земноводные, или Амфибии,
  4. Пресмыкающиеся, или Рептилии,
  5. Птицы,
  6. Млекопитающие, или Звери.

Классы делятся на отряды, семейства, роды и виды. Название вида состоит из названия рода и видового определения. В науке используется систематика на латинском языке.

Так, систематика лисицы, будет следующая:

Тип Хордовые,
Класс Млекопитающие,
Отряд Хищные,
Семейство Собачьи (Волчьи),
Род Лисица,
Вид Лисица обыкновенная.

Характерные особенности класса Млекопитающие

Млекопитающие являются группой, продвинутой в эволюционном плане. Они обладают рядом характерных признаков, позволяющих успешно приспосабливаться к окружающей среде:

  • Млекопитающие - теплокровные животные, с постоянной температурой тела. Большинство активны круглый год. Высокий уровень обмена веществ достигается наличием альвеолярных легких, четырехкамерного сердца и двух кругов кровообращения.
  • Рождают живых детенышей, вскармливают их молоком, характерна забота о потомстве.
  • Зубы дифференцированы на резцы, клыки и коренные. Закрепляются в альвеолах (ячейках в челюстях).
  • Волосяной покров, в коже имеются железы.
  • Высокий уровень развития нервной системы, в первую очередь коры больших полушарий, обеспечивает сложное поведение зверей.

3. Раскройте особенности газообмена в легких и тканях, взаимосвязь дыхательной и кровеносной систем. В чем состоит доврачебная помощь при остановке дыхания?

Газообмен в легких заключается в обогащении крови кислородом и удалении из крови углекислого газа. В этом заключается роль дыхательной системы, дальнейшую транспортировку кислорода ко всем клеткам организма осуществляет кровеносная система. При этом кислород связан с гемоглобином, содержащимся в эритроцитах, что придает крови ярко-алый цвет.

В тканях кислород крови используется для так называемого тканевого дыхания: органические вещества окисляются с участием кислорода до углекислого газа и воды, выделяющаяся при этом энергия запасается в виде АТФ. Образующийся при этом углекислый газ уносится кровью и удаляется через легкие.

Остановка дыхания даже на несколько минут лишает ткани кислорода и приводит к необратимым изменениям, прежде всего в клетках головного мозга. В таком случае необходимо производить искусственное дыхание. Оно должно производиться, пока больной не начнет дышать самостоятельно, или до прибытия скорой помощи.

Для этого, пострадавший укладывается на спину, голова слегка запрокидывается назад. После чего производится вдыхание воздуха способом «рот в рот» или «рот в нос» через носовой платок или специальную маску, имеющуюся в автомобильной аптечке. Частота вдохов 10–12 в минуту для взрослых людей, для ребенка чаще при неглубоком выдохе. (При этом в кровь пострадавшего поступает кислород, содержание которого на выдохе около 16%, а повышенное содержание углекислого газа стимулирует дыхательный центр).

В старых учебниках рекомендовалось до начала искусственного дыхания освободить дыхательные пути от воды и ила. В последние годы этот этап рекомендуется пропускать как малоэффективный, чтобы не терять драгоценные секунды, которые могут спасти человеку жизнь.

Если несчастный случай произошел при пожаре, пострадавшего выносят на свежий воздух, после возобновления дыхания полезно дать кислородную маску.

1. Какие слова в предложениях пропущены и заменены буквами (а-в)?

"Воспроизведение живыми организмами себе подобных называется (а). Различают два типа размножения: (б) и (в)."

Буквами заменены следующие слова: а – размножением (самовоспроизведением), б, в – бесполое и половое.

2. Каково биологическое значение размножения организмов?

Размножение – неотъемлемое свойство всех живых организмов, обеспечивающее увеличение численности особей того или иного вида. При размножении происходит передача наследственной информации от родительских форм потомству, что обеспечивает воспроизведение признаков не только данного вида, но и конкретных родительских особей. Таким образом, размножение обеспечивает длительное существование биологических видов, сохраняя при этом преемственность между родителями и их потомками в ряду многих поколений.

3. Какими способами может осуществляться бесполое размножение у бактерий, протистов, грибов, растений и животных? Какие формы бесполого размножения основаны на явлении регенерации?

Бактерии размножаются делением клетки (а точнее – простым бинарным делением). Одноклеточные протисты могут размножаться делением клетки (например, амёбы, эвглены, инфузории) или с помощью спор (например, хлорелла). Основные способы бесполого размножения многоклеточных водорослей и грибов – фрагментация слоевища (или мицелия) и размножение с помощью спор. Бесполое размножение растений осуществляется при помощи спор, а также вегетативным способом. У примитивных животных (губок, кишечнополостных, некоторых червей) наблюдается почкование и фрагментация.

Вегетативное размножение и размножение путём фрагментации основаны на явлении регенерации.

4. Какие способы вегетативного размножения широко используются в сельском хозяйстве? Почему? Приведите примеры.

В сельском хозяйстве широко используется размножение культурных растений стеблевыми (смородина, виноград) и листовыми (узамбарская фиалка, бегония) черенками, отводками (крыжовник), видоизменёнными побегами – клубнями (картофель, топинамбур), луковицами (лук, чеснок, тюльпан, нарцисс), усами (земляника) и др. Эти способы размножения позволяют получать большое количество дочерних растений за сравнительно короткий срок.

В садоводстве распространено вегетативное размножение с помощью прививки. Этот способ позволяет быстро размножить ценные растения и обеспечивает их ускоренное развитие при полном сохранении сортовых качеств. Прививаемое культурное растение (привой) может получить такие ценные свойства подвоя (растения, на которое делают прививку), как морозоустойчивость, устойчивость к болезням, нетребовательность к плодородию почвы и др.

5. В чём заключаются особенности бесполого размножения растений и животных?

В цикле развития всех растений происходит строгое чередование двух поколений – гаметофита и спорофита и, соответственно, двух способов размножения – полового и бесполого. При этом у спорофита формируются особые органы (спорангии), в которых путём мейоза образуются специализированные клетки – споры. Они состоят из ядра и цитоплазмы с минимальным количеством питательных веществ. В благоприятных условиях споры прорастают и дают начало новым организмам.

Кроме того, многие растения способны к вегетативному размножению. При этом дочерние особи развиваются из вегетативных органов (или их частей) материнского растения.

Среди животных бесполое размножение наблюдается только у примитивных форм – губок, кишечнополостных, некоторых червей. Бесполое размножение этих животных осуществляется путём почкования или фрагментации.

6. При размножении растений одревесневшими черенками рекомендуют делать надрез в нижней части черенка для более быстрого укоренения. Как вы думаете, до какого слоя тканей нужно углубиться? Какой вид корней образуется на черенках?

Надрез нужно делать до камбия. Травмирование клеток образовательной ткани вызывает стимуляцию деления, что способствует ускорению процесса корнеобразования. Корни, которые образуются на черенках, называются придаточными.

7*. У хвощей наружная оболочка каждой споры образует две ленты, которые в сухом воздухе раскручиваются и объединяют споры друг с другом. Благодаря этому споры хвощей распространяются группами. У других растений, например у папоротника щитовника, споры разлетаются поодиночке. С чем связано наличие лент у спор хвощей и почему споры щитовника не имеют таких приспособлений?

Из спор хвощей и папоротников развиваются заростки (гаметофиты). У щитовника заростки обоеполые, а у хвощей – раздельнополые (на одних заростках формируются антеридии, на других – архегонии). Благодаря наличию лент споры хвощей распространяются группами, поэтому мужские и женские гаметофиты находятся в непосредственной близости друг к другу, что способствует оплодотворению.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.