Мода сегодня

Контроль процессов очистки природных вод. Контроль процессов обработки осадков. Процессы метанового брожения и контроль работы метантенков

Контроль процессов очистки природных вод. Контроль процессов обработки осадков. Процессы метанового брожения и контроль работы метантенков

В процессе очистки сточных вод образуются осадки, объем которых может достигать 10-25 % объема сбрасываемых вод. Осадки образуются в первичных отстойниках при механической очистке, во вторичных отстойниках после биофильтров, из которых вымывается биопленка, а также после аэротенков, из которых непрерывно выносится активный ил. На предприятиях пищевой промышленности образуются осадки преимущественно органического состава, основными компонентами которых являются углеводы, белки, жироподобные вещества. Осадки имеют высокую влажность (92-99 %), кроме того, они насыщены различными микроорганизмами, что представляет опасность в санитарном отношении.

Сырые осадки трудно транспортировать, нельзя использовать в качестве удобрения или для других целей, поэтому они подлежат обработке. К основным способам предварительной обработки утилизируемых осадков относятся: уплотнение, стабилизация, обезвоживание, обеззараживание.

Уплотнение осадков проводят в основном гравитационным методом в вертикальных или радиальных уплотнителях, в которых влажность осадков снижается до 85-92% после 4-24 ч пребывания в аппаратах.

Более эффективным методом уплотнения является флотационный . Степень уплотнения осадков во флотационных уплотнителях в 5-10 раз выше по сравнению с гравитационными уплотнителями.

Стабилизацию осадков проводят путем их анаэробного сбраживания в метантенках или аэробной минерализации в аэротенках-стабилизаторах.

Метантенк (рис. 38) представляет собой герметичный резервуар периодического действия, в который закачивают осадки преимущественно органического состава. Обычно в метантенки подают смесь сырого осадка из первичных отстойников и уплотненного активного ила и биопленки из вторичных отстойников.

Для ускорения процессов брожения используют подогрев осадка острым паром до температуры 33 С (мезофильный режим) или до 53 С (термофильный режим). Режим подогрева выбирают с учетом санитарных требований и методов последующей обработки и утилизации осадка. В результате сбраживания, протекающего с участием анаэробных микроорганизмов, происходит распад органических веществ осадка, уменьшение его объема и влажности. При этом на 1 м 3 загруженного осадка образуется около 10 м 3 горючей газовой смеси, состоящей из метана (63-64 %), диоксида углерода (32-33 %) и азота (3-5 %). Образование метана обусловлено распадом белков и жиров, а диоксида углерода – разложением углеводов. Образующаяся горючая смесь может быть использована в качестве топлива.

Рис. 19. Схема метантенка:

1 – трубопровод для подачи осадка; 2 – трубопроводы для выпуска сброженного осадка; 3 – устройство для выпуска газа; 4 – устройства для перемешивания бродящей массы осадка; 5 – трубопровод для подводатеплоносителя

Одним из важных факторов, обусловливающих нормальное брожение в метантенке, является активная реакция среды рН, которая должна быть в пределах 7,2-7,6. При рН ниже 7 начинается вспенивание осадка, появляется сероводород, снижается выход метана, что замедляет процесс распада осадка.

На скорость и величину газообразования, помимо рН среды, влияет температура, состав и доза осадка.

Эмпирическая формула, выражающая зависимость между величинами газоотдачи и дозой загрузки, представлена в следующем виде:

где q – количество газа, выделяющегося на 1 м 3 загруженного осадка, м 3 ;

а – эмпирический коэффициент, зависящий от процентного содержания жира в осадке (а = 32,5-42,5 при содержании жира от 15,5 до 25,0%);

К – доза загрузки осадка в процентах от рабочего объема метантенка (К = 8-15% в зависимости от режима брожения).

Метан, образующийся при сбраживании осадка, можно использовать качестве топлива в котельных установках, а диоксид углерода – для получения жидкой углекислоты. Для удаления газа из метантенков устраивают специальную газовую сеть.

Аэробную минерализацию осадков производят путем их длительного аэрирования в специальных сооружениях – аэротенках-стабилизаторах, где происходит окисление органических примесей и самоокисление биомассы. Продолжительность стабилизационной обработки составляет 8-10 суток, в результате чего концентрация органических веществ в осадке снижается на 25-40%, количество бактерий – на 95-98%.

Обезвоживание осадков проводят с целью снижения их влажности путем подсушивания на иловых площадках или с применением фильтр-прессов, вакуум-фильтров и других устройств.

Иловые площадки представляют собой спланированные площадки земли (карты), окруженные со всех сторон земляными валами, по которым проложены лотки для подвода осадка. Площадки имеют естественное или искусственное дренирующее основание. Сырой или сброженный осадок периодически подают на карты слоями толщиной 0,20-0,25 м в летнее время и 0,5 м в зимнее. Часть влаги теряется за счет испарения, часть фильтруется через грунт, в результате чего влажность осадка снижается до 75-80 %, объем уменьшается в 3-5 раз. Нагрузка на 1 м 2 основания иловых площадок составляет 2,0-3,5 м 3 /год осадка при толщине слоя одноразового выпуска не более 0,5 м.

Полезную площадь иловых площадок определяют по формуле:

где V ос – объем осадка, подаваемого на иловые площадки, м 3 /год;

К – нагрузка, т.е. количество осадка в м 3 , приходящегося на 1 м 2

площади в год.

Более эффективным является обезвоживание осадков в специальных устройствах, из которых наиболее простыми и надежными в эксплуатации являются ленточные фильтр-прессы .

Горизонтальный ленточный фильтр-пресс (рис. 38)состоит из нижней горизонтальной фильтрующей ленты и верхней прижимной ленты. Отжим и фильтрование осадка происходит в пространстве между этими лентами. Обезвоженный осадок срезается ножом и сбрасывается на транспортер. Фильтрованием на фильтр-прессах удаляют до 98 % связанной в осадках воды.

Высушенные осадки можно использовать как топливо или удобрение.

Рис. 38 Схема горизонтального ленточного фильтра:

1 – подача осадков; 2 – прижимная лента; 3 – устройство для снятия обезвоженного осадка; 4 – резервуар для осадка; 5 – подача промывной воды; 6 – отвод промывной воды; 7 – фильтрат; 8 – фильтрующая лента.

Метод сжигания осадков применяют в том случае, если они содержат токсичные примеси или их утилизация нецелесообразна.

ОБРАБОТКА ОСАДКОВ ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД

1 Состав и свойства осадков

Условно осадки можно разделить на три основные категории

− минеральные осадки,

− органические осадки с зольностью менее 10%;

− смешанные с зольностью от 10 до 60%.

Кроме того, все осадки делятся на инертные и токсичные, а также на стабильные и нестабильные (загнивающие). Наиболее просто обрабатываются осадки, содержание неорганические вещества, а содержащиеся в их ценные компоненты − рекуперируются. Осадки второй и третьей группы весьма разнообразны по составу и свойствам. В связи с этим для их обработки используются различные технологические схемы.

Основные задачи современной технологии состоят в уменьшении их объёма и в последующем превращении в безвредный продукт, не вызывающий загрязнения окружающей среды .

Рассмотрим классификацию осадков, предложенную. Он указывает, что «осадки − это суспензии, выделяемые из СВ в процессе их механической, биологической и физико-химической (реагентной) очистки», и приводит следующую классификацию:

− грубые примеси (отбросы), задерживаемые решетками;

− тяжелые примеси (песок);

− плавающие примеси (жировые вещества), всплывающие в отстойниках;

− сырой осадок суспензия, включающая, в основном, оседающие взвешенные вещества, которые задерживаются первичными отстойниками;

− активный ил, задерживаемый во вторичных отстойниках, − комплекс микроорганизмов коллоидного типа с адсорбированными и частично окисленными загрязнениями, извлеченными из СВ в процессе биологической очистки;

− осадок, анаэробно сброженный в осветлителях-перегнивателях, двухъярусных отстойниках и метантенках;

− аэробно стабилизированный активный ил или его смесь с осадком из первичных отстойников в сооружениях типа аэротенков;

− сгущенный активный ил в сепараторах;

− уплотненный активный ил в уплотнителях и др. аппаратах.

Осадки и шламы производственных СВ состоят в основном из неорганических веществ.

Основная часть осадка из первичных отстойников (60-70%) и активного ила (70-75%) – это органические вещества. Велика бактериальная загрязненность этих осадков. В них встречаются все основные формы бактериальных организмов: кокки, палочки, спириллы, возбудители желудочно-кишечных заболеваний, яйца гельминтов.

Химический состав сухого вещества осадков колеблется в широких пределах. Сухое вещество сырых осадков имеет следующий элементный состав (% масс.): углерод − 35,0-88,0; водород − 5,0-9,0; сера − 0,2-2,7; азот − 1,8-8,0; кислород − 7,6-35,0. Сухое вещество активного ила содержит (% мас.): углерод − 44,0-76,0; водород − 5,0-8,2; сера − 0,9-2,7; азот − 3,3-10,0; кислород − 13,0-43,0. В осадках содержатся соединения кремния, алюминия , железа, кальция, магния, калия, натрия, цинка, никеля, хрома и др.

Важная технологическая характеристика осадка – его удельное сопротивление. Удельное сопротивление осадка – это сопротивление единицы массы твердой фазы, отлагающейся на единице площади фильтра при фильтровании под постоянным давлением суспензии, вязкость жидкой фазы которой равна единице. Дана я характеристика определяет водоотдачу осадка. Удельное сопротивление осадков составляет r = 108-1010 м/кг и зависит от гранулометрического и химического состава осадка.

Соединения железа, алюминия, хрома, меди, а также кислоты, щёлочи и некоторые другие вещества, содержащиеся в ПСВ, способствуют интенсификации процесса обезвоживания осадков и снижают расход химических реагентов на их коагуляцию перед обезвоживанием. Масла, жиры, соединения азота, волокнистые вещества, наоборот, являются неблагоприятными компонентами. Окружая частицы осадка, они нарушают процессы уплотнения и коагуляции, а также увеличивают содержание органических веществ в осадке, что сказывается на ухудшении его водоотдачи.

Удельное сопротивление осадка служит исходной величиной при выборе метода обработки осадка и расчете соответствующих сооружений. Необходимо выбирать такие процессы обработки осадков, при которых их удельное сопротивление не увеличивалось бы.

2 Основные процессы, применяемые для обработки осадков производственных СВ

Для обработки и обезвреживания осадков используются различные технологические процессы: уплотнение, стабилизация, кондиционирование, обезвоживание, термическая обработка, утилизация ценных продуктов, ликвидация (рис.1).

Рис. 1 − Типовые процессы, применяемые для обработки осадков производственных сточных вод

Уплотнение осадков связано с удалением свободной влаги. При уплотнении в среднем удаляется 60 % влаги и масса осадка сокращается в 2,5 раза. Для уплотнения активного ила, который имеет влажность 99,2-99,5 % используют гравитационный, флотационный, центробежный и вибрационный методы.

Для предотвращения загнивания осадков проводят их стабилизацию, после которой осадки либо захоранивают, либо утилизируют. В процессе стабилизации осадков происходит разрушение биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизация осуществляется при помощи микроорганизмов анаэробным сбраживанием, аэробной минерализацией, тепловой обработкой, жидкофазным окислением, введением химических реагентов.

Кондиционирование осадков – это процесс предварительной подготовки осадков перед обезвоживанием или утилизацией путём снижения удельного сопротивления и улучшения водоотдающих свойств осадков вследствие изменения их структур и форм связи воды.

Кондиционирование проводят реагентными и безреагентными способами. При реагентной обработке осадки обрабатывают 10 % раствором коагулянтов (FeSO4, Fe2(SO4)3, Al2(SO4)3 и др.). Вместо коагулянтов можно использовать и флокулянты. К безреагентным методам обработки относятся: тепловая обработка, замораживание с последующим отстаиванием, жидкофазное окисление, электрокоагуляция и радиационное облучение.

Сущность метода тепловой обработки состоит в нагревании осадков до температуры 150-200°С и выдерживании при этой температуре в закрытой ёмкости в течение 0,5-2 ч. В результате такой обработки происходит резкое изменение структуры осадка, около 40 % сухого вещества переходит в раствор, а оставшаяся часть приобретает водоотдающие свойства. Осадок после тепловой обработки быстро уплотняется до влажности 92-94 %, а его объём составляет 20-30 % исходного.

Обезвоживание осадков осуществляют либо механическими, либо термическим методами. Уплотнённый осадок легкообезвоживается на иловых площадках или вакуум-фильтрах , пресс-фильтрах, виброфильтрах и центрифугах. Отделённая на стадии уплотнения вода, вследствие распада органического вещества осадка, содержит большое количество растворённых веществ с ХПК около 104 мгО/дм3. Эта вода обычно возвращается на аэрационные очистные сооружения, что вызывает необходимость увеличения их мощности на 10-15 %.

Термическая сушка является заключительным этапом обезвоживания осадков. Влажность осадков после термической сушки составляет 5-40%. Прошедшие термическую сушку осадки легко транспортируются и утилизируются. Для термичекой сушки используют сушилки различной конструкции.

При переработке инертных осадков используются следующие технологические схемы:

Уплотнение – стабилизация – кондиционирование – обезвоживание – утилизация Уплотнение – стабилизация – утилизация

Для переработки токсичных осадков используются технологические схемы:

Уплотнение – ликвидация

Уплотнение – кондиционирование – обезвоживание – утилизация

Уплотнение – кондиционирование – обезвоживание – ликвидация

3 Уплотнение осадков

Наиболее простым методом уплотнения является гравитационное уплотнение , используя которое уплотняют избыточный активный ил и сброженные осадки. Время уплотнения 4-24 час; влажность осадка после уплотнения 85-97%. Активный ил уплотняют в илоуплотнителях вертикального и радиального типов.

К основным недостаткам рассматриваемого способа уплотнения относятся большая продолжительность процесса, высокая влажность осадков, а также значительный вынос взвешенных веществ их илоуплотнителя. Для уменьшения этих недостатков используют технологические приемы: коагуляцию (добавляют FеCl3), перемешивание при уплотнении, совместное уплотнение различных видов осадков, а также нагревание активного ила до 80-90°С в течение 50-80 минут. Нагревание способствует разрушению гидратной оболочки вокруг частиц и переводу части связанной воды в свободной состояние.

При флотационном способе скорость уплотнения осадка в 10-15 раз больше, чем при гравитационном, а степень уплотнения выше. Кроме того, процесс легко регулируется за счет изменения технологических параметров. Применяют импеллерную, электро - и напорную флотацию, причем последняя получила наиболее широкое распространение. Во флотаторе пузырьки воздуха всплывают вместе с частицами взвешенных веществ на поверхность, откуда удаляются скребковыми устройствами различного типа, Осадок, выпавший во флотаторе, удаляется скребковым транспортером или винтовым конвейером. Осветленная вода отводится через водослив.

Для центробежного уплотнения осадков используют центрифуги, гидроциклоны и сепараторы.

Под центрифугированием понимают процесс разделения неоднородных систем (эмульсий и суспензий) в поле центробежных сил. Под действием центробежных сил суспензия разделяется на осадок и жидкую фазу, называемую фугатом. Осадок остается в роторе, а жидкая фаза удаляется из него.

При центрифугировании повышается скорость разделения неоднородных систем в поле центробежных сил по сравнению со скоростью разделения этих систем под действием силы тяжести.

Основная задача обработки осадков сточных вод заключается в получении конечного продукта, свойства которого обеспечивают возможность его утилизации в интересах народного хозяйства либо сводят к минимуму ущерб, наносимый окружающей среде. Технологические схемы, применяемые для реализации этой задачи, отличаются большим многообразием.

Технологические процессы обработки осадков сточных вод на всех очистных станциях механической, физико-химической и биологической очистки можно разделить на следующие основные стадии: уплотнение (сгущение), стабилизация органической части, кондиционирование, обезвоживание, термическая обработка, утилизация ценных продуктов или ликвидация осадков (схема 2) .

Рисунок 5 - Стадии и методы обработки осадка сточных вод

Уплотнение осадков

Уплотнение осадков связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении в среднем удаляется 60 % влаги и масса осадка сокращается в 2,5 раза.

Для уплотнения используют гравитационный, фильтрационный, центробежный и вибрационный способы. Гравитационный способ уплотнения является наиболее распространенным. Он основан на оседании частиц дисперсной фазы. В качестве илоуплотнителей используют вертикальные или радиальные отстойники.

Уплотнение активного ила, в отличие от уплотнения сырого осадка, сопровождается изменением свойств ила. Активный ил как коллоидная система обладает высокой структурообразующей способностью, вследствие чего его уплотнение приводят к переходу части свободной воды в связанное состояние, а увеличение содержания связанной воды в иле приводит к ухудшению водоотдачи.

Применяя специальные методы обработки, например обработку химическими реагентами, можно добиться перевода части связанной воды в свободное состояние. Однако значительную часть связанной воды можно удалить лишь в процессе испарения.

Стабилизация осадка

Анаэробная стабилизация

Основным методом обезвреживания осадков городских сточных вод является анаэробное сбраживание. Брожение называется метановым, так как в результате распада органических веществ осадков в качестве одного из основных продуктов образуется метан.

В основе биохимического процесса метанового брожения лежит способность сообществ микроорганизмов в ходе своей жизнедеятельности окислять органические вещества осадков сточных вод.

Промышленное метановое брожение осуществляется широким спектром бактериальных культур. Теоретически рассматривают брожение осадков, состоящее из двух фаз: кислой и щелочной.

В первой фазе кислого или водородного брожения сложные органические вещества осадка и ила под действием внеклеточных бактериальных ферментов сначала гидролизуются до более простых: белки -- до пептидов и аминокислот, жиры - до глицерина и жирных кислот, углеводы -- до простых сахаров. Дальнейшие превращения этих веществ в клетках бактерий приводят к образованию конечных продуктов первой фазы, главным образом органических кислот. Более 90 % образующихся кислот составляют масляная, пропионовая и уксусная. Образуются и другие относительно простые органические вещества (альдегиды, спирты) и неорганические (аммиак, сероводород, диоксид углерода, водород).

Кислую фазу брожения осуществляют обычные сапрофиты: факультативные анаэробы типа молочнокислых, пропионовокислых бактерий и строгие (облигатные) анаэробы типа маслянокислых, ацетонобутиловых, целлюлозных бактерий. Большинство видов бактерий, ответственных за первую фазу брожения, относится к спорообразующим формам. Во второй фазе щелочного или метанового брожения из конечных продуктов первой фазы образуются метан и угольная кислота в результате жизнедеятельности метанообразующих бактерий -- неспороносных облигатных анаэробов, очень чувствительных к условиям окружающей среды.

Метан образуется в результате восстановления СО 2 или метильной группы уксусной кислоты:

где АН 2 - органическое вещество, служащее для метанообразующих бактерий донором водорода; обычно это жирные кислоты (кроме уксусной) и спирты (кроме метилового).

Многие виды метанообразующих бактерий окисляют молекулярный водород, образующийся в кислой фазе Тогда реакция метанообразования имеет вид:

Микроорганизмы, использующие уксусную кислоту и метиловый спирт, осуществляют реакции:

Все перечисленные реакции являются источниками энергии для метанообразующих бактерий, и каждая из них представляет собой серию последовательных ферментативных превращений исходного вещества. В настоящее время установлено, что в процессе метанообразования принимает участие витамин В 12 , которому приписывают основную роль в переносе водорода в энергетических окислительно-восстановительных реакциях у метанообразующих бактерий.

Считается, что скорости превращения веществ в кислой и метановой фазах одинаковы, поэтому при устойчивом процессе брожения не происходят накопления кислот -- продуктов первой фазы.

Процесс сбраживания характеризуется составом и объемом выделяющегося газа, качеством иловой воды, химическим составом сброженного осадка.

Образующийся газ состоит в основном из метана и диоксида углерода. При нормальном (щелочном) брожения водород как продукт первой фазы может оставаться в газе в объеме не более 1 - 2%, так как используется метанообразующими бактериями в окислительно-восстановительных реакциях энергетического обмена.

Выделившийся при распаде белка сероводород Н 2 S практически не попадает в газ, так как в присутствии аммиака легко связывается с имеющимися ионами железа в коллоидный сульфид железа.

Конечный продукт аммонификации белковых веществ -- аммиак -- связывается с углекислотой в карбонаты и гидрокарбонаты, которые обусловливают высокую щелочность иловой воды.

В зависимости от химического состава осадков при сбраживании выделяется от 5 до 15 м 3 газа на 1 м 3 осадка.

Скорость процесса брожения зависят от температуры. Так, при температуре осадка 25 - 27°С процесс длится 25 - 30 дней; при 10°С продолжительность его увеличивается до 4 месяцев и более. Для ускорения сбраживания и уменьшения объема необходимых для этого сооружений применяют искусственный подогрев осадка до температуры 30 -35°С или 50 - 55°С.

Для нормально протекающего процесса метанового брожения характерны слабощелочная реакция среды (рН? 7,б), высокая щелочность иловой воды (65--90 мг-экв/л) и низкое содержание жирных кислот (до 5 - 12 мг-экв/л). Концентрация аммонийного азота в иловой воде достигает 500 - 800 мг/л.

Нарушение процесса может быть результатом перегрузки сооружения, изменения температурного режима, поступления с осадком токсичных веществ и т. д. Нарушение проявляется в накопления жирных кислот, снижении щелочности иловой воды, падении рН. Резко уменьшается объем образующегося газа, увеличивается содержание в газе угольной кислоты и водорода -- продуктов кислой фазы брожения.

Кислотообразующие бактерии, ответственные за первую фазу брожения, более выносливы ко всякого рода неблагоприятным условиям, в том числе и к перегрузкам. Осадки, поступающие на сбраживание, в значительной степени обсеменены ими. Быстро размножаясь, кислотообразующие бактерии увеличивают ассимиляционную способность бактериальной массы и таким образом приспосабливаются к возросшим нагрузкам. Скорость первой фазы при этом возрастает, в среде появляется большое количество жирных кислот.

Метановые бактерии размножаются очень медленно. Время генерации для некоторых видов составляет несколько дней, поэтому они не в состоянии быстро увеличивать численность культуры, а содержание их в сыром осадке незначительно. Как только нейтрализующая способность бродящей массы (запас щелочности) оказывается исчерпанной, рН резко снижается, что приводит к гибели метанообразующих бактерий.

Большое значение для нормального сбраживания осадка имеет состав сточных вод, в частности наличие в них таких веществ, которые угнетают или парализуют жизнедеятельность микроорганизмов, осуществляющих процесс сбраживания осадка. Поэтому вопрос о возможности совместной очистки производственных я бытовых сточных вод следует разрешать в каждом отдельном случае в зависимости от их характера и физико-химического состава.

При смешивании бытовых сточных вод с производственными необходимо, чтобы смесь сточных вод имела рН=7 - 8 и температуру не ниже 6°С и не выше

30°С. Содержание ядовитых или вредных веществ не должно превышать предельно допустимой концентрации для микроорганизмов, развивающихся в анаэробных условиях. Например, при содержания меди в осадке более 0,5% сухого вещества ила происходит замедление биохимических реакций второй фазы процесса сбраживания и ускорение реакций кислой фазы. При дозе гидроарсенита натрия 0,037% к массе беззольного вещества свежего осадка замедляется процесс распада органического вещества.

Для обработки и сбраживания сырого осадка применяют три вида сооружений: 1) септики (септиктенки); 2) двухъярусные отстойники; 3) метантенки.

В септиках одновременно происходит осветление воды и перегнивание выпавшего из нее осадка. Септики в настоящее время применяют на станциях небольшой пропускной способности.

В двухъярусных отстойниках отстойная часть отделена от гнилостной (септической) камеры, расположенной в нижней части. Развитием конструкции двухъярусного отстойника является осветлитель-перегниватель.

Для обработки осадка в настоящее время наиболее широко используют метантенки, служащие только для сбраживания осадка при искусственном подогреве и перемешивании.

Сброженный осадок имеет высокую влажность (95 - 98%), что затрудняет применение его в сельском хозяйстве для удобрения (из-за трудности перемещения обычными транспортными средствами без устройства напорных разводящих сетей). Влажность является основным фактором, определяющим объем осадка. Поэтому основной задачей обработки осадка является уменьшение его объема за счет отделения воды и получение транспортабельного продукта.