Уход за телом

На какое минимальное расстояние может лететь мбр. Межконтинентальная баллистическая ракета

На какое минимальное расстояние может лететь мбр. Межконтинентальная баллистическая ракета

Введение

Механика (греч. μηχανική – искусство построения машин) – раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними; при этом движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.

«Механикой в широком смысле этого слова называется наука, посвящённая решению любых задач, связанных с изучением движения или равновесия тех или иных материальных тел и происходящих при этом взаимодействий между телами. Теоретическая механика представляет собою часть механики, в которой изучаются общие законы движения и взаимодействия материаль­ных тел, то есть те законы, которые, например, справедливы и для движения Земли вокруг Солнца, и для полёта ракеты или артиллерийского снаряда и т.п. Другую часть механики составляют различные общие и специальные технические дисциплины, посвящённые проектированию и расчёту всевозможных конкретных сооружений, двигателей, механизмов и машин или их частей (деталей)». 1

К специальным техническим дисциплинам можно отнести и предлагаемую вам для изучения Механику полета [баллистических ракет (БР), ракет-носителей (РН) и космических летательных аппаратов (КА)]. РАКЕТА летательный аппарат, движущийся вследствие отбрасывания высокоскоростных горячих газов, создаваемых реактивным (ракетным) двигателем. В большинстве случаев энергия для движения ракеты получается при сгорании двух или более химических компонентов (горючее и окислитель, которые вместе образуют ракетное топливо) или при разложении одного высокоэнергетического химического вещества 2 .

Основной математический аппарат классической механики: дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. К современному математическому аппарату классической механики относятся, прежде всего, теория дифференциальных уравнений, дифференциальная геометрия, функциональный анализ и др. В классической формулировке механика базируется на трёх законах Ньютона. Решение многих задач механики упрощается, если уравнения движения допускают возможность формулировки законов сохранения (импульса, энергии, момента импульса и других динамических переменных).

Задача исследования полета беспилотного ЛА в общем случае очень сложная, т.к. например, ЛА с фиксированными (неподвижными) рулями, как всякое твердое тело имеет 6 степеней свободы и его движение в пространстве описывается 12 дифференциальными уравнениями I-го порядка. Траектория полета реального ЛА описывается значительно большим количеством уравнений.

Ввиду чрезвычайной сложности исследования траектории полета реального ЛА, обычно ее разбивают на ряд этапов и исследуют каждый этап в отдельности, переходя от простых к сложным.

На первом этапе исследования можно рассмотреть движение ЛА, как движение материальной точки. Известно, что движение твердого тела в пространстве можно разделить на поступательное движение центра масс и вращательное движение твердого тела вокруг собственного центра масс.

Для изучения общей закономерности полета ЛА в некоторых случаях при определенных условиях можно не рассматривать вращательное движение. Тогда движение ЛА можно рассматривать, как движение материальной точки, масса которой равна массе ЛА и к которой приложены сила тяги, тяжести и аэродинамического сопротивления.

Следует заметить, что даже при такой упрощенной постановке задачи в ряде случаев приходится учитывать моменты сил, действующих на ЛА и потребные углы отклонения органов управления, т.к. в противном случае невозможно установить однозначную зависимость, например, между подъемной силой и углом атаки; между боковой силой и углом скольжения.

На втором этапе исследуются уравнения движения ЛА с учетом его вращения вокруг собственного центра масс.

Задачей является исследование и изучение динамических свойств ЛА, рассматриваемого как элемент системы уравнений, при этом главным образом интересуются реакцией ЛА на отклонение органов управления и влияние на ЛА различных внешних воздействий.

На третьем этапе (наиболее сложном) проводят исследование динамики замкнутой системы управления, которая включает в себя наряду с другими элементами и сам ЛА.

Одной из основных задач является исследование точности полета. Точность характеризуется величиной и вероятностью отклонения от требуемой траектории. Для изучения вопросов точности управления движением ЛА необходимо составить систему дифференциальных уравнений, которая бы учитывала все силы и моменты. действующие на ЛА, и случайные возмущения. В результате получают систему дифференциальных уравнений высокого порядка, которые могут быть нелинейными, с правильными частями, зависящими от времени, со случайными функциями в правых частях.

Классификация ракет

Ракеты обычно классифицируются по типу траектории полёта, по месту и направленности запуска, по дальности полёта, по типу двигателя, по типу боеголовки, по типу систем управления и наведения.

В зависимости от типа траектории полёта различают:

Крылатые ракеты. Крылатые ракеты - это беспилотные управляемые (до момента поражения цели) летательные аппараты, которые поддерживаются в воздухе большую часть своего полёта за счёт аэродинамической подъёмной силы. Главной целью крылатых ракет является доставка боевого заряда к цели. Они движутся в атмосфере Земли, используя реактивные двигатели.

Межконтинентальные баллистические крылатые ракеты могут подразделяться в зависимости от их размера, скорости (дозвуковая или сверхзвуковая), дальности полёта и места запуска: с земли, воздуха, поверхности корабля или подводной лодки.

В зависимости от скорости полёта ракеты подразделяются на:

1) Дозвуковые крылатые ракеты

2) Сверхзвуковые крылатые ракеты

3) Гиперзвуковые крылатые ракеты

Дозвуковая крылатая ракета движется со скоростью ниже скорости звука. Она развивает скорость, соответствующую числу Маха М = 0,8 … 0,9. Широко известной дозвуковой ракетой является американская крылатая ракета ’Томагавк". Ниже приведены схемы двух российских дозвуковых крылатых ракет, стоящих на вооружении.

Х-35 Уран – Россия

Сверхзвуковая крылатая ракета движется со скоростью около М=2 …3, то есть преодолевает за секунду расстояние приблизительно в 1 километр. Модульная конструкция ракеты и её способность запускаться под различным углом наклона, позволяют запускать ее с различных носителей: военные корабли, подводные лодки, различные типы самолётов, мобильные автономные установки и пусковые шахты. Сверхзвуковая скорость и масса боеголовки обеспечивает ей высокую кинетическую энергию удара (например, Оникс (Россия) она же Яхонт – экспортный вариант; П-1000 Вулкан; П-270 Москит; П-700 Гранит)

П-270 Москит – Россия

П-700 Гранит – Россия

Гиперзвуковая крылатая ракета движется со скоростью М > 5. Многие страны работают над созданием гиперзвуковых крылатых ракет.

Баллистические ракеты . Баллистическая ракета – это ракета, имеющая баллистическую траекторию на большей части пути её полета.

Баллистические ракеты подразделяются по дальности полёта. Максимальная дальность полёта измеряется по кривой вдоль поверхности земли от места запуска и до точки нанесения удара последним элементом боевого заряда. Баллистические ракеты могут запускаться с морских и наземных носителей.

Место старта и направленность запуска определяют класс ракеты:

    Ракеты класса "земля-земля". Ракета класса "земля-земля"– это управляемый снаряд, который можно запускать с рук, транспортного средства, мобильной или стационарной установки. Она приводится в движение ракетным двигателем или иногда, если используется стационарная пусковая установка, выстреливается при помощи порохового заряда.

В России (и ранее в СССР) ракеты класса «земля-земля» разделяют также по назначению на тактические, оперативно-тактические и стратегические. В других странах по назначению ракеты класса «земля-земля» делят на тактические и стратегические.

    Ракеты класса "земля-воздух". Ракета класса "земля-воздух" запускается с поверхности земли. Предназначена для поражения воздушных целей, таких, как самолёты, вертолёты и даже баллистические ракеты. Эти ракеты обычно входят в систему ПВО, так как они отражают любой вид воздушной атаки.

    Ракеты класса "земля-море". Ракета класса "поверхность (земля) -море" предназначена для запуска с земли для поражения кораблей противника.

    Ракеты класса "воздух-воздух". Ракета класса "воздух-воздух" запускается с авиационных носителей и предназначена для поражения воздушных целей. Такие ракеты имеют скорость до М = 4.

    Ракеты класса "воздух-поверхность (земля, вода)". Ракета класса "воздух-поверхность" предназначена для запуска с авиационных носителей для удара, как по наземным, так и по надводным целям.

    Ракеты класса "море-море". Ракета класса "море-море" предназначена для запуска с кораблей для поражения кораблей противника.

    Ракеты класса "море-земля (побережье)". Ракета класса "море-земля (прибрежная зона)" предназначена для запуска с кораблей по наземным целям.

    Противотанковые ракеты. Противотанковая ракета предназначена главным образом для поражения тяжёлобронированных танков и другой бронетехники. Противотанковые ракеты могут запускаться с самолётов, вертолётов, танков, а также с устанавливаемых на плечо пусковых установок.

По дальности полёта баллистические ракеты разделяют на:

    ракеты ближнего радиуса действия;

    ракеты среднего радиуса действия;

    баллистические ракеты средней дальности;

    межконтинентальные баллистические ракеты.

В международных соглашениях с 1987 года применяется другая классификация ракет по дальности полета, хотя никакой общепринятой стандартной классификации ракет по дальности нет. Различные государства и неправительственные эксперты применяют разные классификации дальностей ракет. Так в договоре о ликвидации ракет средней и малой дальности принята следующая классификация:

    баллистические ракеты малой дальности (от 500 до 1000 километров).

    баллистические ракеты средней дальности (от 1000 до 5500 километров).

    межконтинентальные баллистические ракеты (свыше 5500 километров).

По типу двигателя от вида топлива:

    твёрдотопливный двигатель или ракетные двигатели твердого топлива;

    жидкостный двигатель;

    гибридный двигатель – химический ракетный двигатель. Использует компоненты ракетного топлива в разных агрегатных состояниях – жидком и твёрдом. В твердом состоянии может находиться как окислитель, так и горючее.

    прямоточный воздушно-реактивный двигатель (ПВРД);

    ПВРД со сверхзвуковым горением;

    криогенный двигатель – использует криогенное топливо (это сжиженные газы, хранящиеся при очень низкой температуре, чаще всего жидкий водород, используемый в качестве топлива, и жидкий кислород, используемый в качестве окислителя).

Тип боеголовки:

    Обычная боеголовка. Обычная боеголовка наполняется химическими взрывчатыми веществами, взрыв которых происходит от детонации. Дополнительным поражающим фактором являются осколки металлической обшивки ракеты.

    Ядерная боеголовка.

Межконтинентальные ракеты и ракеты средней дальности часто используют в качестве стратегических, их оснащают ядерными боеголовками. Их преимуществом перед самолётами является малое время подлёта (менее получаса при межконтинентальной дальности) и большая скорость головной части, что сильно затрудняет их перехват даже современной системой ПРО.

Системы наведения:

    Электродистанционное наведение. Эта система в целом похожа на радиоуправление, но менее восприимчива к электронным средствам противодействия. Командные сигналы подаются по проводам. После запуска ракеты связь ее с командным пунктом прекращается.

    Командное наведение. Командное наведение включает в себя слежение за ракетой с места запуска или носителя и передачу команд по радио, через радар или лазер или по тончайшим проводам и оптическим волокнам. Слежение может осуществляться при помощи радара или оптических устройств с места запуска или через радарное или телевизионное изображение, передаваемое с ракеты.

    Наведение по наземным ориентирам. Система корреляционного наведения по наземным ориентирам (или по карте местности) применяется исключительно в отношении крылатых ракет. Система использует чувствительные высотомеры, при помощи которых отслеживается профиль рельефа местности, непосредственно находящийся под ракетой, и который сравнивается с "картой", заложенной в памяти ракеты.

    Геофизическое наведение. Система постоянно измеряет угловое положение ЛА по отношению к звёздам и сравнивает его с запрограммированным углом движения ракеты по предполагаемой траектории. Система наведения даёт информацию системе управления, всякий раз, когда требуется внести коррективы в траекторию полёта.

    Инерциальное наведение. Система запрограммирована до старта и полностью хранится в «памяти» ракеты. Три акселерометра, установленные на подставке, стабилизированной в пространстве гироскопами, производят замеры ускорений по трём взаимно перпендикулярным осям. Эти ускорения затем дважды интегрируются: первое интегрирование определяет скорость ракеты, а второе – её положение. Система управления настроена на сохранение заранее заданной траектории полета. Эти системы используются в ракетах класса "поверхность-поверхность (земля, вода)" и крылатых ракетах.

    Наведение по лучу. Используется наземная или располагающаяся на корабле радарная станция, которая сопровождает своим лучом объект поражения. Информация об объекте поступает в систему наведения ракеты, которая при необходимости корректирует угол наведения в соответствии с движением объекта в пространстве.

    Лазерное наведение. При лазерном наведении лазерный луч фокусируется на цели, отражается от неё и рассеивается. В ракете находится лазерная головка самонаведения, которая способна определить даже незначительный источник излучения. Головка самонаведения задаёт направление по отражённому и рассеянному лазерному лучу системе наведения. Ракета запускается в направлении цели, головка самонаведения ищет лазерное отражение, а система наведения направляет ракету к источнику лазерного отражения, который и является целью.

Боевое ракетное оружие принято классифицировать по следующим параметрам:

    принадлежности к видам ВС сухопутные войска, морские войска, воздушные силы;

    дальности полета (от места применения до цели) – межконтинентальное (дальность пуска - более 5500 км), средней дальности (1000–5500 км), оперативно-тактической дальности (300-1000 км), тактической дальности (менее 300 км);

    физической среде применения – от места старта (земля, воздух, надводное, подводное, подледное);

    способу базирования – стационарное, подвижное (мобильное);

    характеру полёта – баллистическое, аэробаллистическое (с крыльями), подводное;

    среде полета – воздушное, подводное, космическое;

    типу управления – управляемое, неуправляемое;

    целевому назначению – противотанковое (противотанковые ракеты), противосамолетное (зенитная ракета), противокорабельное, противорадиолокационное, противокосмическое, противолодочное (против подводных лодок).

Классификация ракет-носителей

В отличие от некоторых горизонтально-стартующих авиационно-космических систем (АКС), ракеты-носители используют вертикальный тип старта и (много реже) воздушный старт.

Количество ступеней.

Одноступенчатых ракет-носителей, выводящих полезную нагрузку в космос, до настоящего времени не создано, хотя имеются проекты различной степени проработки («КОРОНА», HEAT-1X и другие). В некоторых случаях как одноступенчатая может классифицироваться ракета, имеющая в качестве первой ступени воздушный носитель либо использующая в качестве таковой ускорители. Среди баллистических ракет, способных достичь космического пространства, немало одноступенчатых, в том числе и первая баллистическая ракета «Фау-2»; однако ни одна из них не способна выйти на орбиту искусственного спутника Земли.

Расположение ступеней (компоновка). Конструктивное исполнение ракет-носителей может быть следующим:

    продольная компоновка (тандемная), у которой ступени расположены одна за другой и работают в полёте поочерёдно (РН «Зенит-2», «Протон», «Дельта-4»);

    параллельная компоновка (пакетная), при которой несколько блоков, расположенных параллельно и относящихся к разным ступеням, работают в полёте одновременно (РН «Союз»);

    • условно-пакетная компоновка (т. н. полутораступенчатая схема), в которой используются общие топливные баки для всех ступеней, от которых питаются стартовые и маршевые двигатели, запускающиеся и работающие одновременно; по завершении работы стартовых двигателей сбрасываются только они.

    комбинированная продольно-поперечная компоновка.

Используемые двигатели. В качестве маршевых двигателей могут использоваться:

    жидкостные ракетные двигатели;

    твёрдотопливные ракетные двигатели;

    различные комбинации на разных ступенях.

Масса полезной нагрузки. В зависимости от массы полезного груза ракеты-носители делятся на следующие классы:

    ракеты сверхтяжёлого класса (больше 50 тонн);

    ракеты тяжелого класса (до 30 тонн);

    ракеты среднего класса (до 15 тонн);

    ракеты лёгкого класса (до 2-4 тонн);

    ракеты сверхлёгкого класса (до 300-400 кг).

Конкретные границы классов меняются с развитием техники и являются достаточно условными, в настоящее время лёгким классом считаются ракеты, выводящие на низкую опорную орбитугруз массой до 5 т, средними - от 5 до 20 т, тяжёлыми - от 20 до 100 тонн, сверхтяжёлыми - свыше 100 т. Появляется также новый класс так называемых «нано-носителей» (полезная нагрузка – до нескольких десятков кг).

Повторное использование. Наибольшее распространение получили одноразовые многоступенчатые ракеты, как пакетной, так и продольной компоновки. Одноразовые ракеты отличаются высокой надёжностью благодаря максимальному упрощению всех элементов. Следует уточнить, что одноступенчатой ракете для достижения орбитальной скорости теоретически необходимо иметь конечную массу не более 7-10 % от стартовой, что при даже существующих технологиях делает их труднореализуемыми и экономически неэффективными из-за низкой массы полезного груза. В истории мировой космонавтики одноступенчатые ракеты-носители практически не создавались –существовали только т. н. полутораступенчатые модификации (например, американской РН «Атлас» со сбрасываемыми дополнительными стартовыми двигателями). Наличие нескольких ступеней позволяет существенно увеличить отношение массы выводимой полезной нагрузки к начальной массе ракеты. В то же время многоступенчатые ракеты требуют отчуждения территорий для падения промежуточных ступеней.

Ввиду необходимости применения высокоэффективных сложных технологий (прежде всего, в области двигательных установок и теплозащиты), полностью многоразовых ракет-носителей пока не существует, несмотря на постоянный интерес к этой технологии и периодически открывающиеся проекты разработки многоразовых носителей (за период 1990-2000-х годов – такие, как: ROTON, Kistler K-1, АКС VentureStar и др.). Частично многоразовой являлась широко использовавшаяся американская многоразовая транспортная космическая система (МТКС)-АКС «Спейс шаттл» («Космический челнок») и закрытая советская программа МТКС «Энергия –Буран», разработанная, но так и не использованная в прикладной практике, а также ряд нереализованных бывших (например, «Спираль», МАКС и др. АКС) и вновь разрабатываемых (например, «Байкал-Ангара») проектов. Вопреки ожиданиям, «Спейс шаттл» не смог обеспечить снижение стоимости доставки грузов на орбиту; кроме того, пилотируемые МТКС характеризуются сложным и длительным этапом предстартовой подготовки (из-за повышенных требований по надёжности и безопасности при наличии экипажа).

Присутствие человека. Ракеты для пилотируемых полётов должны обладать большей надёжностью (также на них устанавливается система аварийного спасения); допустимые перегрузки для них ограничены (обычно не более 3-4,5 единиц). При этом сама ракета-носитель является полностью автоматической системой, выводящей в космическое пространство аппарат с людьми на борту (это могут быть как пилоты, способные осуществлять непосредственное управление аппаратом, так и так называемые «космические туристы»).

Вниманию читателей представлены самые быстрые ракеты в мире за всю историю создания.

Скорость 3,8 км/с

Самая быстрая ракета средней баллистической дальности с максимальной скоростью 3,8 км в секунду открывает рейтинг самых быстрых ракет в мире. Р-12У являлся модифицированным вариантом Р-12. Ракета отличалась от прототипа отсутствием промежуточного днища в баке окислителя и некоторыми незначительными изменениями конструкции - в шахте нет ветровых нагрузок, что позволило облегчить баки и сухие отсеки ракеты и отказаться от стабилизаторов. С 1976 года ракеты Р-12 и Р-12У начали сниматься с вооружения и заменяться на подвижные грунтовые комплексы «Пионер». Они были сняты с вооружения в июне 1989 года, и в период по 21 мая 1990 года на базе Лесная в Белоруссии были уничтожены 149 ракет.

Скорость 5,8 км/с

Одна из самых быстрых американских ракет-носителей с максимальной скоростью 5,8 км в секунду. Является первой разработанной межконтинентальной баллистической ракетой, принятой на вооружение США. Разрабатывалась в рамках программы MX-1593 с 1951 года. Составляла основу ядерного арсенала ВВС США в 1959-1964 годах, но затем была быстро снята с вооружения в связи с появлением более совершенной ракеты «Минитмэн». Послужила основой для создания семейства космических ракет-носителей Атлас, эксплуатирующегося с 1959 и поныне.

Скорость 6 км/с

UGM -133 A Trident II - американская трехступенчатая баллистическая ракета, одна из самых быстрых в мире. Её максимальная скорость составляет 6 км в секунду. “Трезубец-2” разрабатывался с 1977 года параллельно с более легким “Трайдентом-1”. Принят на вооружение в 1990 году. Стартовая масса - 59 тонн. Макс. забрасываемый вес - 2,8 тонны при дальности пуска 7800 км. Максимальная дальность полета при уменьшенном числе боевых блоков - 11 300 км.

Скорость 6 км/с

Одна из самых быстрых твердотопливных баллистических ракет в мире, стоящая на вооружении России. Имеет минимальный радиус поражения 8000 км, примерную скорость 6 км/с. Разработка ракеты ведётся с 1998 года Московским институтом теплотехники, разработавшим в 1989-1997 гг. ракету наземного базирования «Тополь-М». К настоящему времени произведено 24 испытательных пусков «Булавы», пятнадцать из них признаны успешными (в ходе первого пуска запускался массогабаритный макет ракеты), два (седьмой и восьмой) - частично успешными. Последний испытательный пуск ракеты состоялся 27 сентября 2016 года.

Скорость 6,7 км/с

Minuteman LGM -30 G - одна из самых быстрых межконтинентальных баллистических ракет наземного базирования в мире. Её скорость составляет 6,7 км в секунду. LGM-30G «Минитмэн» III имеет расчетную дальность полета от 6000 километров до 10 000 километров в зависимости от типа боеголовки. Минитмен-3 стоит на вооружении США с 1970 года по сегодняшний день. Она является единственной ракетой шахтного базирования в США. Первый пуск ракеты состоялся в феврале 1961 года, модификации II и III были запущены в 1964 году и 1968 соответственно. Ракета весит около 34 473 килограмм, оснащена тремя твердотопливными двигателями. Планируется, что ракета будет стоять на вооружении вплоть до 2020 года.

Скорость 7 км/с

Самая быстрая противоракета в мире, предназначенная для поражения высокоманевренных целей и высотных гиперзвуковых ракет. Испытания серии 53Т6 комплекса «Амур» были начаты в 1989 году. Её скорость составляет 5 км в секунду. Ракета представляет собой 12-метровый остроконечный конус без выступающих частей. Ее корпус изготовлен из высокопрочных сталей с использованием намотки из композиционных материалов. Конструкция ракеты позволяет выдерживать большие перегрузки. Перехватчик стартует со 100-кратным ускорением и способен перехватывать цели, летящие со скоростью до 7 км в секунду.

Скорость 7,3 км/с

Самая мощная и быстрая ядерная ракета в мире со скоростью 7,3 км в секунду. Предназначена она, прежде всего, для того чтобы разрушать самые укрепленные командные пункты, шахты баллистических ракет и авиабазы. Ядерная взрывчатка одной ракеты может разрушить большой город, весьма большую часть США. Точность попадания – около 200-250 метров. Ракета размещается в самых прочных в мире шахтах. SS-18 несет 16 платформ, одна из которых загружена ложными целями. Выходя на высокую орбиту все головки «Сатаны» идут «в облаке» ложных целей и практически не идентифицируются радарами».

Скорость 7,9 км/с

Межконтинентальная баллистическая ракета (DF-5A) с максимальной скоростью 7,9 км в секунду открывает тройку самых быстрых в мире. Китайская МБР DF-5 поступила в эксплуатацию в 1981 году. Она может нести огромную боеголовку на 5 мт и имеет диапазон более чем 12,000 км. У DF-5 отклонение приблизительно в 1 км, что означает, что у ракеты одна цель - уничтожать города. Размер боеголовки, отклонение и факт, что на её полную подготовку к запуску требуется всего час, все это означают, что DF-5 - карательное оружие, предназначенное для наказания любых потенциальных нападающих. Версия 5A имеет увеличенный диапазон, улучшение отклонения на 300 м и способность нести несколько боеголовок.

Р-7 Скорость 7,9 км/с

Р-7 - советская, первая межконтинентальная баллистическая ракета, одна из самых быстрых в мире. Ее предельная скорость составляет 7,9 км в секунду. Разработку и выпуск первых экземпляров ракеты осуществило в 1956-1957 годах подмосковное предприятие ОКБ-1. После успешных пусков она была использована в 1957 году для запуска первых в мире искусственных спутников Земли. С тех пор ракеты-носители семейства Р-7 активно применяются для запуска космических аппаратов различного назначения, а с 1961 года эти ракеты-носители широко используются в пилотируемой космонавтике. На основе Р-7 было создано целое семейство ракет-носителей. С 1957 по 2000 год выполнены запуски более 1800 ракет-носителей на базе Р-7, из них более 97 % стали успешными.

Скорость 7,9 км/с

РТ-2ПМ2 «Тополь-М» (15Ж65) - самая быстрая межконтинентальная баллистическая ракета в мире с максимальной скоростью 7,9 км в секунду. Предельная дальность - 11 000 км. Несёт один термоядерный боевой блок мощностью 550 кт. В шахтном варианте базирования принята на вооружение в 2000 году. Метод старта - миномётный. Маршевый твёрдотопливный двигатель ракеты позволяет ей набирать скорость намного быстрее предыдущих типов ракет аналогичного класса, созданных в России и Советском Союзе. Это значительно затрудняет её перехват средствами ПРО на активном участке полёта.

russlandia_007, Значит, и планов о нападении у РФ нет, и вся эта антироссийская пропаганда на Западе - пшик!

"Американские МБР наземного базирования застряли в 1970-х годах

На вооружении у США имеются МБР наземного базирования только одного типа - LGM-30G «Минитмен-3». Каждая ракета несет по одному боезаряду W87 мощностью до 300 килотонн (но может нести до трех боеголовок).
Последняя ракета этого типа была изготовлена в 1978 году. Это значит, что самой «молодой» из них - 38 лет. Эти ракеты неоднократно модернизировались, а срок их службы планируется завершить в 2030 году.

Новая система МБР под названием GBSD (средство стратегического сдерживания наземного базирования) похоже застряла на стадии обсуждения. ВВС США запросили 62,3 миллиарда долларов на разработку и производство новых ракет, и надеются в 2017 году получить 113,9 миллиона долларов.
Однако Белый дом не поддерживает эту заявку. На самом деле, многие там против данной идеи. Разработку отложили на год, а теперь перспективы GBSD будут зависеть от исхода президентских выборов в 2016 году.

Стоит отметить, что американское правительство намерено потратить на ядерное оружие колоссальную сумму: около 348 миллиардов долларов к 2024 году, причем 26 миллиардов пойдет на МБР. Но для GBSD 26 миллиардов недостаточно. Реальные расходы могут оказаться выше, учитывая то обстоятельство, что США давно уже не производили новые межконтинентальные ракеты наземного базирования.
Последняя такая ракета под названием LGM-118A «Пискипер» была развернута в 1986 году. Но к 2005 году США в одностороннем порядке сняли все 50 ракет этого типа с боевого дежурства, хотя не будет преувеличением сказать, что LGM-118A «Пискипер» была лучше в сравнении с LGM-30G «Минитмен-3», так как могла нести до 10 боеголовок.
Несмотря на провал Договора о сокращении стратегических наступательных вооружений СНВ-2, которым запрещалось использование РГЧ с индивидуальным наведением, США добровольно отказались от своих РГЧ.
Доверие к ним было утрачено из-за большой стоимости, а также из-за скандала, в ходе которого выяснилось, что у этих ракет почти четыре года (1984-88 гг.) НЕ БЫЛО СИСТЕМЫ НАВЕДЕНИЯ AIRS (усовершенствованная инерциальная опорная сфера). Кроме того, компания-производитель ракет пыталась скрыть задержку поставки - в то время, когда холодная война подходила к концу.

У России также есть таинственная ракета РС-26 «Рубеж».
Информации о ней немного, но скорее всего, этот комплекс является дальнейшим развитием проекта «Ярс», обладая возможностью наносить удары на межконтинентальной и средней дальности.
Минимальная дальность пуска этой ракеты составляет 2 000 километров, и этого достаточно для прорыва американских систем ПРО в Европе. Соединенные Штаты возражают против развертывания данной системы на том основании, что это будет нарушением договора РСМД. Но такие утверждения не выдерживают критики: максимальная дальность пуска РС-26 превышает 6 000 километров, а это значит, что она является межконтинентальной баллистической ракетой, но не баллистической ракетой средней дальности.

С учетом вышесказанного становится очевидно, что Соединенные Штаты существенно отстают от России в разработке МБР наземного базирования.
У Соединенных Штатов одна, причем довольно старая межконтинентальная баллистическая ракета «Минитмен-3», способная нести только одну боеголовку.

А перспективы разработки нового образца ей на замену весьма неопределенные. В России ситуация совсем иная. МБР наземного базирования обновляются регулярно - на самом деле, процесс разработки новых ракет идет безостановочно.
Каждая новая МБР разрабатывается с учетом прорыва ПРО противника, в силу чего проект европейской ПРО и наземная система противоракетной обороны на маршевом участке полета (комплекс противоракетной обороны США, предназначенный для перехвата приближающихся боевых частей) в обозримой перспективе будут неэффективны против российских ракет".
28 апреля 2016, Военное обозрение,

С началом «холодной войны» правительство США, возглавляемое Г. Трумэном, приняло стратегию «массированного воздействия», основанную на монополии на атомную бомбу и превосходстве над СССР в средствах ее доставки – стратегических бомбардировщиках. Их парк принялись спешно обновлять.

Однако в 1949 году атомной бомбой обзавелся и СССР. Только у него еще не было современных носителей – дальний бомбардировщик Ту‑4 представлял собой копию устаревшего американского B‑29 времен Второй мировой войны.

13 июля 1944 в личном и строго секретном послании премьер‑министр У. Черчилль сообщал маршалу И. Сталину, что, видимо, Германия располагает новым ракетным оружием, которое представляет серьезную угрозу для Лондона, и просил допустить английских специалистов на испытательный полигон в Польше, который находился в районе наступления советских войск. В Польшу срочно выехала группа советских специалистов по ракетам.

Создание дальнобойных ракет началось в Германии в 1930‑е годы. К 1938 году на острове Пенемюнде, близ побережья Балтийского моря, был построен исследовательский центр с опытной станцией и заводом. Заводы, в том числе крупные подземные, находившиеся в Нордхаузене, выпускали в 1944–1945 годы по 25‑30 ракет А‑4 («Фау‑2») в сутки! К концу Второй мировой войны было изготовлено более тысячи таких снарядов.

Точность попадания немецких ракет оставляла желать лучшего, но на практике были отработаны и испытаны сложные системы управления, наведения и контроля полета. Этим воспользовались советские ученые при проектировании стратегических межконтинентальных баллистических ракет.

Первый советский наземный комплекс с баллистической ракетой Р‑1 был создан ОКБ‑1 под руководством С.П. Королёва и принят на вооружение 28 ноября 1950 года. На ракете Р‑1 был установлен жидкостный реактивный двигатель (ЖРД) типа РД‑100. 75 процентов топлива составлял спирт, а остальное – жидкий кислород. Его тяга равнялась 267 кН, масса – 13 тоннам, дальность – 270 километрам.

В начале 1950‑х годов в Днепропетровске был создан государственный союзный завод № 586, в дальнейшем «Южмаш», он стал выпускать ракеты Р‑1 и Р‑2.

Пришедший к власти в 1953 году Н.С. Хрущев сделал ставку на ракетную технику. К 1956 году завершилась работа над баллистической Р‑5М средней дальности, оснащенной ядерной боеголовкой, через четыре года на боевое дежурство поставили уже межконтинентальную Р‑7А. Изготовленная по пакетной схеме, она предназначалась для поражения объектов, находящихся в 9500 километрах от огневой позиции. Именно эта ракета в августе 1957 года вывела в околоземное пространство первый в истории искусственный спутник, а в апреле 1961 года – корабль с первым в мире космонавтом на борту – Ю.А. Гагариным. Годом раньше на вооружение поступила баллистическая Р‑12 средней дальности. Все они запускались с наземных установок, а время подготовки к пуску исчислялось часами.

Следом за американцами в СССР началось строительство подводного ракетоносца, на котором три ракеты (морской вариант Р‑11) размещались на дизель‑электрической лодке.

К концу 1950‑х годов Советский Союз обладал межконтинентальными баллистическими ракетами, войска противовоздушной обороны были оснащены сверхзвуковыми высотными перехватчиками и зенитными ракетными комплексами.

В середине 1950‑х годов президент США Д. Эйзенхауэр принял стратегию достижения превосходства над СССР в ядерном оружии и средствах его доставки. «Изучив вывезенные из Германии ракеты (в том числе Фау‑2), – пишет в журнале «Техника – молодежи» Сергей Колесников, – опробовав свои экспериментальные образцы, американцы в 1958–1959 годах получили баллистические ракеты средней дальности «Тор» и "Юпитер", оснащенные ядерными боеголовками ("Юпитер‑C" в феврале 1958 года вывел на орбиту первый американский искусственный спутник "Эксплорер"). После этого командование ВВС задумало пополнить арсенал более эффективными межконтинентальными баллистическими ракетами «Атлас» и "Титан". Обе – шахтного базирования, но запускаемые с поверхности земли. Не прошло и трех лет, как Пентагон получил улучшенные «Атласы» серий «Е» и "Ф". Последнюю, стартовым весом 118 тонн, выполнили по пакетной схеме, как королёвскую "семерку", но оборудовали только двумя боковыми ускорителями. Кроме них, в силовую установку входили два рулевых двигателя, маршевый жидкостный ракетный с турбонасосной подачей топлива (керосин и жидкий кислород).

К этому времени военные эксперты сочли стационарные позиции уязвимыми, и в 1959 году американцы ввели в строй первый серийный подводный ракетоносец с атомной силовой установкой "Джордж Вашингтон". За его рубкой был отсек с 16 баллистическими ракетами "Поларис A1", каждая из которых имела моноблочную ядерную боеголовку и могла преодолеть до 1200 километров».

В 1959 году коллектив Сергея Павловича Королёва – ОКБ‑1 приступил к разработке МБР Р‑9А (SS‑8), которая представляла собой двухступенчатую баллистическую ракету с отделяющейся головной частью с ядерным зарядом. Здесь в качестве окислителя впервые применялся переохлажденный жидкий кислород, а в качестве топлива – керосин. Ракетный комплекс Р‑9А со стартом с наземного пускового стола был принят на вооружение в 1963 году, с шахтной пусковой установки – в 1965 году.

МБР Р‑16 и Р‑9А еще не обладали достаточной точностью. Размещение ракет Р‑16 и Р‑9А в шахтах, конечно, увеличило выживаемость ракет, но сгруппированные по три МБР на одной пусковой установке, они представляли собой единую цель для поражения.

Ракетно‑ядерное противостояние СССР и США в годы «холодной войны» продолжалось. К началу 1962 году американские ВВС получили межконтинентальную баллистическую ракету «Титан‑1». При дальности действия 16000 километров она имела точность попадания до 1,7 километра от цели. Позднее появилась трехступенчатая, твердотопливная «Минитмен», у которой точность попадания достигла 1,6 километра. В июне 1963 года США обзавелись мощной 150‑тонной межконтинентальной «Титан‑2».

За пятью ракетоносцами типа «Джордж Вашингтон» в 1961–1963 годах последовало столько же аналогичных атомоходов типа «Итен Аллен», вооруженных 16 модернизированными «Поларисами A2».

МБР второго поколения имели большую точность и были оснащены системой электронной защиты. Размещение ракет в укрепленных шахтных пусковых установках (ШПУ), расположенных на значительном удалении друг от друга, намного повысило их выживаемость. Первой из МБР второго поколения в СССР была жидкостная Р‑36 (SS‑9) с моноблочной ядерной головной частью, разработанная в КБ М. Янгеля. Р‑36 предназначена для поражения важнейших стратегических объектов противника, защищенных средствами противоракетной обороны. Ракета могла оснащаться разнообразными типами головных частей, имеющих ядерные заряды различной мощности. В 1967 году ракетный комплекс Р‑36 в ШПУ был принят на вооружение. Это был комплекс с уникальными боевыми возможностями. Всего в период между 1966 и 1977 годами было развернуто 288 МБР Р‑36 всех типов.

В середине 1960‑х годов в США и СССР начались разработки МБР третьего поколения. 18 июня 1970 года первый отряд из десяти МБР «Минитмен‑3», оснащенных РГЧ с боеголовками индивидуального наведения, был приведен в боевую готовность в пусковых шахтах.

В 1975–1981 годах ракетные комплексы стратегических ракет РС‑16 (SS‑17), РС‑18 (SS‑19) и РС‑20 (SS‑18), также оснащенные разделяющимися головными частями индивидуального наведения, были приняты на вооружение и поставлены на боевое дежурство в СССР. На новых ракетных комплексах был применен целый ряд технических новшеств: автономная система управления с бортовой вычислительной машиной, возможность дистанционного перенацеливания перед пуском, наличие на ракетах более совершенных средств преодоления ПРО и т д. Они могли выдерживать более высокое давление, а также противостоять воздействию электромагнитных помех, включая электромагнитный импульс.

Принятие на вооружение и развертывание ракетных комплексов третьего поколения, оснащенных головками индивидуального наведения и средствами преодоления ПРО, позволили достичь примерного равенства количества боевых блоков на МБР СССР и США, что способствовало поддержанию военно‑стратегического паритета.

В 1978–1979 годах среди стратегических американских программ на передний план выдвинулась разработка системы «MX». С ее помощью руководство США рассчитывало поставить под удар стартовые шахты МБР Советского Союза и таким образом лишить СССР преимущества по МБР наземного базирования. При выборе способа базирования ракеты «MX» специалисты рассматривали до 30 разных вариантов пусковых установок. Однако Пентагону не удалось найти для «MX» приемлемый в техническом, стратегическом, экономическом и политическом отношениях неуязвимый способ базирования.

В итоге в 1986 году первая партия из 50 ракет «MX» была размещена в доработанных шахтах ракеты «Минитмен» взамен снятых с дежурства ракет этого типа. Программа президента США Р. Рейгана «стратегическая оборонная инициатива» – «СОИ», выдвинутая им в марте 1983 года, стала сильнейшим дестабилизирующим фактором. Она предусматривала вывод на космические орбиты ядерного оружия и оружия на новых физических принципах, что создавало исключительно высокую опасность и уязвимость пространства и территории Советского Союза.

В этих условиях в 1980‑е годы СССР для поддержания стратегического паритета создавал новые ракетные комплексы шахтного и железнодорожного базирования с ракетами РС‑22 (SS‑24), модернизировал БРК РС‑20, а также создавал комплексы РС‑12М (SS‑25) грунтового базирования. Эти комплексы относятся к четвертому поколению стратегических ракет.

«Вкладывая ресурсы в столь дорогостоящее качество, как мобильность, – пишет С. Крылов, – Советский Союз в первую очередь заботился о повышении живучести своих ракетных сил – главного качества для средств ответного, а не упреждающего ядерного удара. Тем более, это важно в условиях, когда СССР отказался от применения первым ядерного оружия, а США и НАТО продолжали открыто ориентироваться на первый ядерный удар.

В 1984 году на вооружение РВСН поступила твердотопливная МБР РС‑22 (РТ‑23) (SS‑24), созданная в НПО «Южное» (гл. конструктор В. Уткин). Было создано два варианта ПУ: шахтная и мобильная железнодорожная. Трехступенчатая РТ‑23, аналог "MX", массой 100 тонн с 10 боеголовками индивидуального наведения (масса боевой части – 4 тонны) выпускалась в Павлограде. Система для разведения боеголовок у ракеты использует ЖРД на высококипящих компонентах топлива. Старт ракеты из ТПК "холодный". Точность попадания ракеты – меньше 200 метров.

Боевой железнодорожный ракетный комплекс (БЖРК) внешне не отличишь от поезда с рефрижераторными и пассажирскими вагонами. Каждый БЖРК предназначен для длительного автономного несения боевого дежурства на маршрутах патрулирования. Пуск ракет можно осуществлять с любой точки маршрута движения. В железнодорожном вагоне длиной 26 метров, шириной 3 метра размещен пусковой контейнер длиной 21,25 метра с ракетой РС‑22. В 1990 году на шести поездах было размещено 18 таких ракет. В 1991 году было принято решение прекратить производство МБР железнодорожного базирования».

Одним из самых удачных считается мобильный грунтовой ракетный комплекс РС‑12М «Тополь» (SS‑25). Трехступенчатую МБР РТ‑2ПМ на твердом топливе массой 45 тонн с моноблочной однотонной ядерной боеголовкой создали в Московском институте теплотехники. Главным конструктором являлся Лагутин. Первое летное испытание ракеты провели 8 февраля 1983 года, а уже в 1985 году ракета поступила на вооружение. Производили ракеты РТ‑2ПМ в Воткинске. Машина, на которой базируется ракета, – семиосная типа МАЗ‑7310 – изготавливается на заводе «Баррикады» в Волгограде.

Ракета РТ‑2ПМ всю свою «жизнь» проводит в специальном пусковом контейнере длиной 22 метра и диаметром 2 метра. Стотонная пусковая установка при весьма солидных размерах обладает удивительной подвижностью.

«Тополь» можно пускать из любой точки маршрута боевого патрулирования. К тому же этот комплекс обладает большой живучестью и боевой эффективностью, точностью попадания – двести метров.

31 июля 1991 года при подписании договора по СНВ, СССР и США обменялись официальными данными (в СССР на вооружении было 1398 МБР, из них 321 мобильная).

Распад СССР и острейший экономический кризис сделали нереальным производство более чем одного типа наземных МБР с моноблочной головкой в России.

3 января 1993 года между Россией и США был подписан договор по СНВ‑2, согласно которому к 2003 году уничтожаются или переоборудуются МБР наземного базирования с разделяющимися головными частями индивидуального наведения. Сохраняются только МБР с моноблочными боеголовками. Ликвидируются шахты для запуска тяжелых ракет или переоборудуются под моноблочные.

Поэтому на смену тяжелым МБР приходит универсальный комплекс «Тополь‑М» для шахтного и мобильного базирования. Шахтный вариант «Тополь‑М2» заменит ракеты РС‑2 (SS‑18) и часть ракет РС‑18 (SS‑19).

«Тополь‑М» (РС‑12М2, по натовской классификации SS‑27) – трехступенчатая твердотопливная ракета шахтного базирования с моноблочной головной частью. Это первая МБР, созданная исключительно российскими КБ и заводами. Ее конструктивные особенности таковы, что позволяют преодолевать самую современную систему ПРО. Планируется каждый год оснащать новыми ракетами один полк, то есть закупать каждый год десять «Тополь‑М».

20 января 1960 года в СССР была принята на вооружение первая в мире межконтинентальная баллистическая ракета Р-7. На базе этой ракеты было создано целое семейство ракет-носителей среднего класса, внесших большой вклад в освоение космоса. Именно Р-7 вывела на орбиту корабль «Восток» с первым космонавтом - Юрием Гагариным. Мы решили рассказать о пяти легендарных советских баллистических ракетах.

Двухступенчатая межконтинентальная баллистическая ракета Р-7, которую ласково называли «семеркой», имела отделяющуюся головную часть массой 3 тонны. Ракета разрабатывалась в 1956–1957 годах в подмосковном ОКБ-1 под руководством Сергея Павловича Королева. Она стала первой межконтинентальной баллистической ракетой в мире. Р-7 была принята на вооружение 20 января 1960 года. Она имела дальность полета 8 тыс. км. Позднее была принята модификация Р-7А с увеличенной до 11 тыс. км дальностью. В Р-7 использовалось жидкое двухкомпонентное топливо: в качестве окислителя - жидкий кислород, в качестве горючего - керосин Т-1. Испытания ракеты начались в 1957 году. Первые три запуска оказались неудачными. Четвертая попытка была успешной. Р-7 несла термоядерный боевой заряд. Забрасываемый вес составлял 5400–3700 кг.

Видео

Р-16

В 1962 году в СССР была принята на вооружение ракета Р-16. Ее модификация стала первой советской ракетой, способной стартовать из шахтной пусковой установки. Для сравнения - американские SM-65 Atlas также хранились в шахте, но стартовать из шахты не могли: перед запуском они поднимались на поверхность. Р-16 также первой советской двухступенчатой межконтинентальной баллистической ракетой на высококипящих компонентах топлива с автономной системой управления. Ракета была принята на вооружение в 1962 году. Необходимость разработки этой ракеты определялась низкими тактико-техническими и эксплуатационными характеристиками первой советской МБР Р-7. Первоначально Р-16 предполагалось запускать только с наземных пусковых установок. Р-16 оснащалась отделяемой моноблочной головной частью двух типов, отличавшихся мощностью термоядерного заряда (порядка 3 Мт и 6 Мт). От массы и соответственно мощности головной части зависела максимальная дальность полёта, колебавшаяся в пределах от 11 тыс. до 13 тыс. км. Первый запуск ракеты закончился аварией. 24 октября 1960 года на полигоне Байконур во время намеченного первого испытательного пуска ракеты Р-16 на этапе выполнения предстартовых работ, примерно за 15 минут до старта, произошел несанкционированный запуск двигателей второй ступени из-за прохождения преждевременной команды на запуск двигателей от токораспределителя, что было вызвано грубым нарушением процедуры подготовки ракеты. Ракета взорвалась на стартовой площадке. Погибли 74 человека, в том числе командующий РВСН маршал М. Неделин. Позднее Р-16 стала базовой ракетой для создания группировки межконтинентальных ракет РВСН.

РТ-2 стала первой советской серийной твердотопливной межконтинентальной баллистической ракетой. Она была принята на вооружение в 1968 году. Эта ракета имела дальность - 9400–9800 км. Забрасываемый вес - 600 кг. РТ-2 отличалась малым временем подготовки к пуску - 3–5 минут. Для Р-16 на это уходило 30 минут. Первые летные испытания были проведены с полигона Капустин Яр. Было произведено 7 успешных запусков. Во время второго этапа испытаний, который проходил с 3 октября 1966 года по 4 ноября 1968 года на полигоне Плесецк, из 25 запусков 16 были успешными. Ракета эксплуатировалась вплоть до 1994 года.

Ракета РТ-2 в музее «Мотовилихи», Пермь

Р-36

Р-36 представляла собой ракету тяжелого класса, способную нести термоядерный заряд и преодолевать мощную систему ПРО. Р-36 имела три боевых блока по 2,3 Мт. Ракета была принята на вооружение в 1967 году. В 1979 году была снята с вооружения. Старт ракеты производился из шахтной пусковой установки. В процессе испытаний было проведено 85 пусков, из них 14 отказов, 7 из которых приходятся на первые 10 пусков. Всего же было проведено 146 пусков всех модификаций ракеты. Р-36М - дальнейшее развитие комплекса. Эта ракета также известна как «Сатана». Это был самый мощный в мире боевой ракетный комплекс. Он значительно превосходил и своего предшественника - Р-36: по точности стрельбы - в 3 раза, по боеготовности - в 4 раза, по защищенности пусковой установки - в 15–30 раз. Дальность ракеты составляла до 16 тыс. км. Забрасываемый вес - 7300 кг.

Видео

«Темп-2С»

«Темп-2С» - первый мобильный ракетный комплекс СССР. Подвижная пусковая установка базировалась на шестиосном колесном шасси МАЗ-547А. Комплекс предназначался для нанесения ударов по хорошо защищенным средствами ПВО/ПРО и расположенным в глубине территории противника важным объектам военной и промышленной инфраструктуры. Летные испытания комплекса «Темп-2С» начались первым пуском ракеты 14 марта 1972 года на полигоне Плесецк. Летно-конструкторский этап в 1972 году проходил не слишком гладко: 3 пуска из 5 были неудачными. Всего в процессе летных испытаний проведено 30 пусков, 7 из них аварийные. На завершающем этапе совместных летных испытаний в конце 1974 года, был проведен залповый пуск двух ракет, а последний испытательный пуск выполнен 29 декабря 1974 года. Подвижный грунтовый ракетный комплекс «Темп-2С» был принят на вооружение в декабре 1975 года. Дальность ракеты составляла 10,5 тыс. км. Ракета могла нести термоядерную боеголовку 0,65–1,5 Мт. Дальнейшим развитием ракетного комплекса «Темп-2С» стал комплекс «Тополь».