Мода и стиль

Доказательство генетической роли днк. Жизненный цикл клетки Почему постоянное содержание днк в разных клетках

Доказательство генетической роли днк. Жизненный цикл клетки Почему постоянное содержание днк в разных клетках

Типы нуклеиновых кислот. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.

Каждый из нуклеотидов, входящих в состав РНК, содержит пятиуглеродный сахар - рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, - аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых оснований.

Рис. 7. Схема строения ДНК. Многоточием обозначены водородные связи

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями (рис. 7). Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

А (аденин) - Т (тимин)
Т (тимин) - А (аденин)
Г (гуанин) - Ц (цитозин)
Ц (цитозин) - Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями. На рисунке 8 приведены две нити ДНК, которые соединены комплементарными участками.

Рис. 8. Участок двуспиральной молекулы ДНК

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (иРНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов - рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. В синтезе белка принимает участие и другой вид РНК - транспортная (тРНК), которая подносит аминокислоты к месту образования белковых молекул - рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная (рРНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина - урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

  1. Рассмотрите рисунок 7 и скажите, в чем особенность строения молекулы ДНК. Какие компоненты входят в состав нуклеотидов?
  2. Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?
  3. Используя таблицу, дайте сравнительную характеристику ДНК и РНК.

  1. Фрагмент одной цепи ДНК имеет следующий состав: -А-А-А-Т-Т-Ц-Ц-Г-Г-. Достройте вторую цепь.
  2. В молекуле ДНК тиминов насчитывается 20% от общего числа азотистых оснований. Определите количество азотистых оснований аденина, гуанина и цитозина.
  3. В чем сходство и различие между белками и нуклеиновыми кислотами?

Содержание ДНК в органах и тканях животных и человека колеблется в широких пределах и, как правило, тем выше, чем больше клеточных ядер приходится на единицу массы ткани. Особенно много ДНК (около 2,5% сырого веса) в вилочковой железе, состоящей главным образом из лимфоцитов с крупными ядрами. Довольно много ДНК в селезенке (0,7-0,9%), мало (0,05-0,08%) в мозге и мышцах, где ядерное вещество составляет значительно меньшую долю. На ранних стадиях эмбрионального развития в этих органах содержится больше ДНК, но содержание ее уменьшается в процессе онтогенеза по мере дифференцировки. Однако количество ДНК на одно клеточное ядро, содержащее диплоидный набор хромосом, практически постоянно для каждого биологического вида. Соответственно количество ДНК в ядрах половых клеток вдвое ниже. По этой же причине различные физиологические и патологические факторы почти не влияют на содержание ДНК в тканях, а при голодании, например, относительное содержание ДНК даже возрастает за счет снижения концентрации других веществ (белков, углеводов, липидов, РНК). У всех млекопитающих количество ДНК в диплоидном ядре почти одинаково и составляет около 6 1012 г, у птиц - около 2,5 10-12, у разных видов рыб, амфибий и простейших оно колеблется в значительных пределах.

У бактерий одна гигантская молекула ДНК образует генофор, соответствующий хромосоме высших организмов. Так, у кишечной палочки Escherichia coli молекулярный вес такой кольцеобразной двуспиральной молекулы достигает около 2,5-Ю9 и длины, превышающей 1,2 мм . Эта огромная молекула плотно упакована в небольшой «ядерной области» бактерии и соединена с бактериальной мембраной.

В хромосомах высших организмов (эукариотов) ДНК находится в комплексе с белками, главным образом гистонами; в каждой хромосоме содержится, по-видимому, одна молекула ДНК длиной до нескольких сантиметров и молекулярным весом до нескольких десятков миллиардов. Такие огромные молекулы умещаются в клеточном ядре и в митотических хромосомах длиной в несколько микрометров. Часть ДНК остается не связанной с белками; участки несвязанной ДНК перемежаются с блоками ДНК, связанной с гистонами. Показано, что в таких блоках содержится по две молекулы гистонов 4 типов: Нда, Hab, Hg и Н4.

Помимо клеточного ядра, ДНК содержится в митохондриях и в хлоропластах. Количество такой ДНК обычно невелико и составляет небольшую долю общей ДНК клетки. Однако в ооцитах и на ранних стадиях эмбрионального развития животных подавляющая часть ДНК локализована в цитоплазме, главным образом в митохондриях. В каждой митохондрии содержится по поскольку молекул ДНК. У животных мол. вес митохондриальной ДНК составляет около 10-106; ее двуспиральные молекулы замкнуты в кольцо и находятся в двух основных формах: сверхскрученной и открытой кольцевой. В митохондриях и в хлоропластах ДНК не находится в комплексе с белками, она ассоциирована с мембранами и напоминает бактериальную ДНК Небольшие количества ДНК обнаружены также в мембранах и некоторых других структурах клеток, однако их особенности и биологического роль остаются неясными.

содержание ДНК на 1 клетку, мг 10 -9 число пар нуклеотидов на 1 клетку

Млекопитающие

Пресмыкающиеся

Земноводные

Насекомые

Ракообразные

Моллюски

Иглокожие

Высшие растения

Водоросли

Бактерии

Бактериофаг Т2

Бактериофаг 1

Вирус папилломы

Гистохимические методы обнаружения в тканях

В основе гистохимических методов выявления нуклоиновых кислот лежат реакции на все компоненты, входящие в их состав. В растущих тканях происходит быстрое обновление пуринов, пиримидинов, фосфорных соединений и Сахаров. Этим пользуются для избирательного выявления в них ДНК авторадпографическим методом с помощью 3Н-тимпдпна. ДНК образует соли с щелочноземельными и тяжелыми металлами. Остатки фосфорной кислоты, которые обычно связаны с ядерными белками (чаще всего гистонами), при вытеснении последних легко вступают в химические реакции с основными красителями. Для этого могут быть использованы сафранин О, янус зеленый В, толуидиновый синий, тионин, азур А и не которые другие красители, разведенные растворы которых в уксусной кислоте избирательно окрашивают хроматин. Для количественного гистохимические определения ДНК рекомендуется метод с применением галлоцианин-хромосовых квасцов, который обладает двумя ценными качествами. Галлоцианинхромовые квасцы дают устойчивую окраску, которая не меняется при обезвоживании и просветлении срезов в ксилоле. Окрашивание можно проводить при любом значении рН от 0,8 до 4,3, однако рекомендуется работать при оптимальном значении рН для этого красителя - 1,64, так как при нем происходит максимальное специфическое выявление ДНК. При окрашивании галлопианинхромовыми квасцами ДНК соединяется с красителем в стехиометрическом соотношении, причем отношение краситель: ДНК составляет 1:3,7.

Наиболее распространенной реакцией на ДНК считается реакция Фейльгена. Она проводится после мягкого гидролиза предварительно фиксированной ткани в 1 и. НС1 при 60°, в результате чего от дезоксирибозофосфата отщепляются пурины, а затем и ппрпмпдины, освобождая тем самым реакционноспособные альдегидные группы, которые реактивом Шиффа окрашиваются в красный цвет. Время гидролиза зависит от природы объекта и метода фиксации. Для получения хороших результатов необходимо в каждом отдельном случае время гидролиза подбирать экспериментально.

Для проверки специфичности реакции Фейльгена существует метод ферментативного и кислотного экстрагирования ДНК. Ферментативное расщепление ДНК проводят дезоксирибонукдеазой при концентрации ферментного препарата 2 мг на 100 мл 0,01 М трисбуфера рН 7,6; раствор перед употреблением разводят диетической водой в соотношении 1:5. Рекомендуется инкубировать срезы при 37° в течение 2 час. Другим способом удаления ДНК служит обработка гистохимических препаратов 5% водным раствором трихлоруксуснои кислоты в течение 15 мин. при 90° или 10% горячей (70°) хлорной кислотой в течение 20 мин., после чего реакция Фейльгена должна дать отрицательные результаты.



Учебное пособие

Ответственный за выпуск Финаев В.И.

Редактор Белова Л.Ф.

Коррпектор Проценко И.А.

ЛП №020565 от 23.-6.1997 г. Подписано к печати

Офсетная печать Усл. п.л. – 10,1 Уч.-изд.л. – 9,7

Заказ № Тираж 500 экз.

_____________________________________________________

Издательство ЮФУ

Типография ЮФУ

ГСП 17А, Таганрог, 28, Некрасовский, 44

1. Доказательство генетической роли ДНК

2. Химическое строение нуклеиновых кислот

3.1. Строение ДНК

3.2. Уровни компактизации ДНК

3.3. Репликация ДНК

3.4. Репарация ДНК

3.5. Функции ДНК

5.1. Основные положения системной концепции гена

5.2. Плазмогены

5.3. Свойства гена

5.4. Функции гена

5.5. Строение гена про- и эукариот

5.6. Регуляция работы гена

6. Этапы экспрессии генетической информации

6.1. Транскрипция

6.2. Процессинг

6.3. Трансляция

6.3.1. Свойства генетического кода

6.3.2. Активация аминокислот

6.3.3. Этапы трансляции

6.4. Процессинг белка

Краткие биографические сведения

МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ.

Мы вошли в клетку, нашу колыбель, и начали

составлять опись обретенного нами богатства.

Альберт Клод (1974г.)

Доказательство генетической роли ДНК.

Открыты нуклеиновые кислоты швейцарским биохимиком Ф. Мишером в 1869 году в ядрах клеток гноя (лейкоцитов) и сперматозоидов. В 1891 году немецкий биохимик А. Кессель показал, что нуклеиновые кислоты состоят из остатков сахара, фосфорной кислоты и четырех азотистых оснований, являющихся производными пурина и пиримидина. Он же впервые доказал существование двух типов нуклеиновых кислот – ДНК и РНК . Затем в 1908 – 1909 годах Ф. Левеном было дано описание строения нуклеозидов и нуклеотидов, а в 1952 году английскими исследователями под руководством А. Тодда – фосфодиэфирной связи. В 20-е годы Фельген обнаружил ДНК в хромосомах, а РНК были обнаружены в ядре и цитоплазме. В 1950 году Э. Чаргафф с сотрудниками из колумбийского университета установили различия в нуклеотидном составе ДНК у разных видов.

В 1953 году американским биохимиком и генетиком Дж. Уотсоном и английским физиком Ф. Криком была предложена модель двойной спирали ДНК. Эта дата официально считается днем рождения новой отрасли биологической науки – молекулярной биологии .

Надо отметить, что в годы, когда даже не было намека на генетическую роль нуклеиновых кислот, они воспринимались всеми как довольно странный материал, имеющий в химическом плане не очень сложное строение (азотистые основания, пентозы, остаток фосфорной кислоты). Однако их функциональное значение было расшифровано значительно позже, что было связано с незнанием особенностей строения нуклеиновых кислот. С точки зрения ученых конца 19 и начала 20 веков, они по сложности и комбинативности проигрывали белкам, мономерами которых были 20 видов аминокислот. Поэтому общепринятым в науке было мнение, что белки являются носителями наследственной информации, т.к. разнообразие аминокислот позволяло закодировать все многообразие свойств и признаков живых организмов.

Хотя еще в 1914 году русский исследователь Щепотьев высказал идею о возможной роли нуклеиновых кислот в наследственности, но не сумел доказать свою точку зрения. Однако постепенно накапливались научные факты о генетической роли нуклеиновых кислот.

1928 год. Английский микробиолог Фредерик Гриффит работал с двумя штаммами микроорганизмов: вирулентным (имел полисахаридную капсулу) и авирулентным (капсулы не имел) (рис.1). Вирулентный вызывал пневмонию у мышей и их гибель. Если вирулентный штамм нагреть, то он инактивируется и не опасен – все мыши выживают (постулат ученых того времени: ген имеет белковую природу, при нагревании белки денатурируют и теряют свою биологическую активность). Если смешать нагретый вирулентный и живой авирулентный, то часть мышей гибнет. При вскрытии мышей у них были обнаружены вирулентные капсульные формы. Аналогичная картина наблюдалось, если к живому авирулентному штамму бактерии добавить бесклеточный экстракт из вирулентных форм. Из этих опытов Ф. Гриффит сделал вывод, что от убитых нагреванием вирулентных форм и бесклеточных экстрактов к живым бескапсульным формам передается какой-то фактор , который переводит авирулентную форму в вирулентную. Это явление получило название «трансформация » бактерий и много лет «оставалось загадкой».

Рис. 1 Опыты Ф. Гриффита по трансформации у бактерий.

1. При заражение мышей авирулентными пневмококками они все выживали.

2. При заражение мышей вирулентными пневмококками они все погибали от пневмонии.

3. При заражение мышей убитыми нагреванием вирулентными пневмококками они все выживали.

4. При заражение мышей смесью живых авирулентных и убитых нагреванием

вирулентных пневмококков часть мышей погибала.

5. При заражение мышей смесью живых авирулентных и экстракта из убитых нагреванием вирулентных пневмококков часть мышей погибала. («От молекул до человека», 1973, с. 83)

Однако объяснить природу трансформирующего фактора Ф. Гриффит не смог. Это сделали американские ученые О. Эйвери, Дж. Мак – Леод, М. Мак – Карти в 1944 году . Они показали, что очищенные экстракты ДНК пневмококков могут вызвать трансформацию бактерий. Очищенный трансформирующий агент содержал небольшое количество белков. Протеолитические ферменты его не инактивировали, а дезоксирибонуклеаза – инактивировала. Своими блестящими экспериментами они показали, что ДНК – то вещество, которое изменяет генетическую информацию . Эти опыты были первым научным доказательством генетической роли нуклеиновых кислот. Окончательно этот вопрос был решен в экспериментах на вирусах бактерий - бактериофагах в 1948 – 1952гг . Бактериофаги имеют очень простое строение: они состоят из белковой оболочки и молекулы нуклеиновой кислоты. Это делает их идеальным материалом для изучения вопроса о том, что служит генетическим материалом – белок или ДНК. В опытах с мечеными соединениями А. Херши и М. Чейз (1952г.) было убедительно показано, что ДНК является носителем генетической информации , так как вирус впрыскивает её в тело бактериальной клетки, а белковая «оболочка» остается снаружи (рис.2).

Рис.2. Бактериофаг Т2 при помощи «хвоста» прикрепляется к бактерии. Он вводит в нее свою ДНК, после чего происходит ее репликация и синтез новых белковых оболочек. Затем бактерия лопается, высвобождая множество новых частиц вируса, каждая из которых может заразить новую бактерию («От молекул до человека», 1973, с. 86)

В результате описанных выше экспериментов стало ясно, что у бактерий и фагов генетическим материалом служит ДНК . Но является она носителем наследственной информации у эукариотических клеток? Ответ на этот вопрос был получен в экспериментах по переносу целых хромосом из одной клетки в другие. В реципиентных клетках проявились некоторые признаки клетки – донора. А затем, благодаря успехам генной инженерии, смогли добавлять отдельные гены (ДНК, содержащую только один ген), которые были утрачены мутантными клетками. Этими экспериментами было установлено, что ДНК у эукариот является генетическим материалом и была доказана возможность переноса генов между разными видами с сохранениями их функциональных свойств.

О генетической функции ДНК говорят следующие факты:

1. Локализация ДНК почти исключительно в хромосомах.

2. Постоянство числа хромосом в клетках одного вид равное 2n.

3. Постоянство количества ДНК в клетках одного вида равное 2С или 4С, в зависимости от стадии клеточного цикла.

4. Уменьшенное вдвое количество ДНК в ядрах половых клеток

5. Влияние мутагенов на химическую структуру ДНК.

6. Явление генетической рекомбинации у бактерий при их конъюгации.

7. Явление трансдукции – перенос генетического материала от одного штамма бактерий в другой с помощью ДНК фага.

8. Инфицирующая функция изолированной нуклеиновой кислоты вирусов.

Генетикам удалось выяснить, почему при одинаковости ДНК во всех клетках организма сами клетки развиваются по-разному. Они нашли код, блокирующий информационные участки генетического кода. Причём код оказался универсальным для разных видов.

В генетическом коде помимо информации, определяющей все белки, которые может произвести клетка, найден еще один механизм кодирования. Код закладывает порядок блокировки информации. Она недоступна для считывания на тех участках молекулы ДНК, где цепочка накручена на гистоны – своеобразные белковые катушки, и код указывает места скрутки.

Определяющие местоположение заблокированных кусочков ДНК последовательности нуклеотидов описали Эран Сигал из израильского Института Вейцмана и Джонатан Уидом из Северо-Западного универститета в Иллионойсе в последнем номере журнала Nature.

Биологи в течение многих лет подозревали, что участки ДНК, которые наиболее легко накручиваются на нуклеосомы, благосклонны к этому благодаря особым факторам. Но, какие это факторы, было непонятно. Учёные проанализировали более двухсот свёрнутых в нуклеосомы участков ДНК дрожжей.

И обнаружили скрытые метки – особую последовательность нуклеотидных пар на некоторых участках цепи, определяющих доступность следующего за ними генетического материала. Они расположены в считавшейся до сих пор «мусорной» части ДНК

Зная эти ключевые участки, исследователи сумели правильно предсказать местоположение 50% нуклеосом в клетках аналогичных тканей у других видов (в каждой клетке содержится около 30 миллионов нуклеосом).

Фактически открытие означает установление универсального для всех живых организмов механизма блокировки генетической информации.

Доктор Сигал, по его словам, был весьма удивлен такому хорошему результату. По его предположению, нуклеосомы часто перемещаются, открывая для считывания новые участки ДНК. Местоположение неразгаданной половины скрученных ДНК определяется соревнованием между нуклеосомами и другими механизмами блокировки.

На свободных участках ДНК при необходимости транскрибировать ген (создать новый белок) реализуется похожий природный механизм меток. Об этом коде учёные знали уже давно: перед геном , определяющим вещество, стоят «поясняющие» его 6–8 нуклеотидных пар.

Сами катушки-нуклеосомы состоят из белков гистонов. В процессе эволюции гистоны проявили себя как наиболее стойкие к изменениям. Они так же практически не различаются у разных видов живых организмов. Так, гистоны гороха и коровы различны всего в двух из 102 аминокислотных соединений. А так как любая информация о белке содержится в виде последовательности нуклеотидных пар в ДНК-коде, ученые давно предполагали, что существует похожий для многих организмов механизм блокировки информации в ДНК-коде. Записанный в виде последовательности нуклеотидных пар, им может оказаться как раз нуклеосомный код.

А сочетание кода считывания и кода блокировки как раз и определяет, во что превратится данная клетка при развитии организма из зародыша.




Анонсы новостей - что это?
Почему артисты становятся президентами
Про то, как опытные журналюги, блоггеры и артисты используют свои навыки для вранья в пользу своих представлений и активно продвигают это вранье методами изощренной, давно отрепетированной риторики.
: .
26-06-2019г.

Особенности понимания схемотехнических систем
В чем заключаются основные причины современного недопонимания функций адаптивных уровней эволюционного развития мозга: .
22-03-2019г.

Про свободу слова
Эссе про свободу слова, демократию и о том, что делать с потоками лжи, которые проистекают от слова высказанного: .
20-03-2019г.

Оптимальная скорость творчества
Нужно ли стремиться к максимальной скорости творчества и его производительности? .
13-03-2019г.

Конструирование модели социума мира будущего
Модель будущего на основе представлений об организации психики: .
24-02-2019г.

Занятия по адаптологии
Асинхронная онлайн-школа: .
14-10-2018г.

О поддержке онлайн-обучения на сайте Форнит
Инструменты для создания своей онлайн-школы: .
08-10-2018г.

Общество мифов
Как не достичь этического дна, когда высказанное слово – есть ложь: .
16-09-2018г.

О реорганизации академической науки
Cделана попытка найти направления к решению проблем академической науки именно на основе модели организации психики:

Полное название образовательного учреждения: Департамент общего образования Томской области Филиал областного государственного образовательного учреждения «Томский государственный педагогический колледж » в г. Колпашево

Курс: Биология

Раздел: Общая биология

Тема: Биополимеры. Нуклеиновые кислоты, АТФ и другие органические соединения.

Цель занятия: продолжить изучение биополимеров, способствовать формированию приемов логической деятельности, познавательных способностей.

Задачи урока:

Образовательные: познакомить студентов с понятиями нуклеиновые кислоты, способствовать осмыслению и усвоению материала.

Развивающие: развивать когнитивные качества студентов (умение видеть проблему, умение задавать вопросы).

Воспитательные: формировать положительную мотивацию к изучению биологии, стремление получить конечный результат, умение принимать решения и делать выводы.

Время реализации: 90 мин.

Оборудование:

· раздаточный дидактический материал (список кодирования аминокислот);

План:

1. Типы нуклеиновых кислот.

2. Строение ДНК.

3. Основные виды РНК.

4. Транскрипция.

5. АТФ и другие органические соединения клетки.

Ход занятия:

I. Организационный момент.
Проверка готовности к занятию.

II. Повторение.

Устный опрос:

1. Охарактеризуйте функции жиров в клетке.

2. В чем отличие биополимеров белков от биополимеров углеводов? В чем их сходство?

Тестирование (3 варианта)

III. Изучение нового материала.

1. Типы нуклеиновых кислот. Название нуклеиновые кислоты происходит от латинского слова «нуклеос», т. е. ядро: они впервые были обнаружены в клеточных ядрах. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения и играют центральную роль в хранении и передаче наследственной информации. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Каждый из нуклеотидов, входящих в состав РНК, содержит триуглеродный сахар - рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, - аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

2. Строение ДНК . Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу; одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых основания.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц.

Схематически сказанное можно выразить следующим образом:

А (аденин) - Т (тимин)

Т (тимин) - А (аденин)

Г (гуанин) - Ц (цитозин)

Ц (цитозин) - Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

3. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

В синтезе белка принимает участие и другой вид РНК - транспортная (т-РНК), которая подносит аминокислоты к месту образования белковых молекул - рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная (р-РНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина - урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация обо всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

4. Транскрипция.

Процесс образования и-РНК называется транскрипцией (от лат. «транскрипцио» - переписывание). Транскрипция происходит в ядре клетки. ДНК → и-РНК с участием фермента полимеразы. т-РНК выполняет функцию переводчика с «языка» нуклеотидов на «язык» аминокислот, т-РНК получает команду от и-РНК - антикодон узнает кодон и несет аминокислоту.

Конечный продукт" href="/text/category/konechnij_produkt/" rel="bookmark">конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды - мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

Путь к синтезу каждого из конечных продуктов лежит через ряд промежуточных соединений. Многие вещества подвергаются в клетках ферментативному расщеплению, распаду.

Конечными продуктами биосинтеза являются вещества, играющие важную роль в регуляции физиологических процессов и развитии организма. К числу их относятся многие гормоны животных. Гормоны тревоги или стресса (например, адреналин) в условиях напряжения усиливают выход глюкозы в кровь, что, в конечном счете, приводит к увеличению синтеза АТФ и активному использованию энергии, запасенной организмом.

Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями.

АТФ - универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ.

Средняя продолжительность жизни 1 молекулы АТФ в организме человека менее минуты, поэтому она расщепляется и восстанавливается 2400 раз в сутки.

В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия (Е), которая освобождается при отщеплении фосфата:

АТФ = АДФ + Ф + Е

В этой реакции образуется аденозиндифосфорная кислота (АДФ) и фосфорная кислота (фосфат, Ф).

АТФ + H2O → АДФ + H3PO4 + энергия(40 кДж/моль)

АТФ + H2O → АМФ + H4P2O7 + энергия(40 кДж/моль)

АДФ + H3PO4 + энергия(60 кДж/моль) → АТФ + H2O

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений (например, у люминесцентных бактерий), т. е. для всех процессов жизнедеятельности.

IV . Итог занятия.

1. О б о б щ е н и е изученного материала.

Вопросы к студентам:

1. Какие компоненты входят в состав нуклеотидов?

2. Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?

3. Дайте сравнительную характеристику ДНК и РНК.

4. Решите задачи:

1)

Г-Г-Г-А-Т-А-А-Ц-А-Г-А-Т достройте вторую цепь.

Ответ: ДНК Г-Г-Г - А-Т-А-А-Ц-А-Г-А-Т

Ц-Ц-Ц-Т-А-Т-Т-Г-Т-Ц-Т-А

(по принципу комплементарности)

2) Укажите последовательность нуклеотидов в молекуле и-РНК, построенной на этом участке цепи ДНК.

Ответ: и-РНК Г-Г-Г-А-У-А-А-Ц-А-Г-Ц-У

3) Фрагмент одной цепи ДНК имеет следующий состав:

А-А-А-Т-Т-Ц-Ц-Г-Г-. достройте вторую цепь.

Ц-Т-А-Т-А-Г-Ц-Т-Г-.

5. Решите тест:

4) Какой из нуклеотидов не входит в состав ДНК?

б) урацил;

в) гуанин;

г) цитозин;

д) аденин.

Ответ: б

5) Если нуклеотидный состав ДНК

АТТ-ГЦГ-ТАТ - то каким должен быть нуклеотидный состав и-РНК?

а) ТАА-ЦГЦ-УТА;

б) ТАА-ГЦГ-УТУ;

в) УАА-ЦГЦ-АУА;

г) УАА-ЦГЦ-АТА.

Ответ: в

6) Антикодон т-РНК УУЦ соответствует коду ДНК?

Ответ: б

7) В реакцию с аминокислотами вступает:

Ответ: а

6. В чем сходство и различие между белками и нуклеиновыми кислотами?

7. Каково значение АТФ в клетке?

8. Что является конечными продуктами биосинтеза в клетке? Каково их биологическое значение?

9. Рефлексия:

Что было трудно запомнить на занятии?

Что нового узнал на занятии?

Что вызвало интерес на занятии?

VI . Домашнее задание.

Решить задачу:

АТФ - постоянный источник энергии для клетки. Его роль можно сравнить с ролью аккумулятора. Объясните, в чем заключается это сходство?

Список использованной литературы и Интернет-ресурсов:

1. Биология. Общая биология. 10-11 классы / , – М.: Просвещение, 2010. – с.22

2. Биология. Большой энциклопедический словарь /гл. ред. . – 3-е изд. – М.: Большая Российская энциклопедия, 1998. – с.863

3. Биология. 10-11классы: организация контроля на уроках. Контрольно-измерительные материалы /сост. – Волгоград: Учитель, 2010. – с.25

4. Энциклопедия для детей. Т. 2. Биология /сост. . – 3-е изд. перераб. и доп. – М.: Авнта+, 1996. – ил: с. 704

5. Модель АТФ - http:///news/2009/03/06/protein/

6. Модель ДНК– http:///2011/07/01/dna-model/

7. Нуклеиновые кислоты – http:///0912/0912772_ACFDA_stroenie_nukleinovyh_kislot_atf. pptx