Уход за руками

Физические и химические свойства водорода. Водород — характеристика, физические и химические свойства

Физические и химические свойства водорода. Водород — характеристика, физические и химические свойства

Водоро́д (калька с латинского: лат. Hydrogenium - hydro = «вода», gen = «порождающий»; hydrogenium - «порождающий воду»; обозначается символом H) - первый элемент периодической системы элементов . Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H - протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1 H - протий (Н), 2 H - дейтерий (D) и 3 H - тритий (радиоактивен) (T).

Простое вещество водород - H 2 - лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, платине.

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ - вода и γεννάω - рождаю) - «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году - по аналогии с «кислородом» М. В. Ломоносова.

Распространённость

Во Вселенной
Водород - самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов - менее 0,1 %). Таким образом, водород - основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы
Массовая доля водорода в земной коре составляет 1 % - это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).
Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.
Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре:
СН 4 + 2Н 2 O = CO 2 + 4Н 2 −165 кДж

Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, - разложение воды электротоком. Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:




Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:




Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

ОПРЕДЕЛЕНИЕ

Водород - первый элемент Периодической таблицы. Обозначение - H от латинского «hydrogenium». Расположен в первом периоде, IА группе. Относится к неметаллам. Заряд ядра равен 1.

Водород является одним из наиболее распространенных химических элементов - его доля составляет около 1% от массы всех трех оболочек земной коры (атмосферы, гидросферы и литосферы), что при пересчете на атомные проценты дает цифру 17,0.

Основное количество этого элемента находится в связанном состоянии. Так, вода содержит около 11 вес. %, глина - около 1,5% и т.д. В виде соединений с углеродом водород входит в состав нефти, горючих природных газов и всех организмов.

Водород представляет собой газ без цвета и запаха (схема строения атома представлена на рис. 1). Его температуры плавления и кипения лежат весьма низко (-259 o С и -253 o С соответственно). При температуре (-240 o С) и под давлением водород способен сжижаться, а при быстром испарении полученной жидкости переходить в твердое состояние (прозрачные кристаллы). В воде он растворим незначительно - 2:100 по объему. Характерна для водорода растворимость в некоторых металлах, например, в железе.

Рис. 1. Строение атома водорода.

Атомная и молекулярная масса водорода

ОПРЕДЕЛЕНИЕ

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода.

Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного водорода равна 1,008 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы.

ОПРЕДЕЛЕНИЕ

Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м.

Известно, что молекула водорода двухатомна - H 2 . Относительная молекулярная масса молекулы водорода будет равна:

M r (H 2) = 1,008 × 2 = 2,016.

Изотопы водорода

Водород имеет три изотопа: протий 1 H, дейтерий 2 Н или D и тритий 3 Н или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий находится в природе в ничтожно малых количествах.

Ядро атома водорода 1 H содержит один протон. Ядра дейтерия и трития включают кроме протона один и два нейтрона.

Ионы водорода

Атом водорода может либо отдавать свой единственный электрон с образованием положительного иона (представляющего собой «голый» протон), либо присоединять один электрон, переходя в отрицательный ион, имеющий гелийную электронную конфигурацию.

Полный отрыв электрона от атома водорода требует затраты очень большой энергии ионизации:

Н + 315 ккал = Н + + е.

Вследствие этого при взаимодействии водорода с металлоидаими возникают не ионные, а лишь полярные связи.

Тенденция того или иного нейтрального атома к присоединению избыточного электрона характеризуется значением его сродства к электрону. У водорода оно выражено довольно слабо (однако это не говорит о невозможности существования такого иона водорода):

Н + е = Н — + 19 ккал.

Молекула и атом водорода

Молекула водорода состоит из двух атомов - Н 2 . Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Примеры решения задач

ПРИМЕР 1

Задание Докажите, что существуют гидриды общей формулы ЭН х, содержащие 12,5% водорода.
Решение Рассчитаем массы водорода и неизвестного элемента, приняв массу образца за 100 г:

m(H) = m (ЭН х) ×w (H);

m(H) = 100 × 0,125 = 12,5 г.

m(Э) = m (ЭН х) — m(H);

m(Э) = 100 - 12,5 = 87,5 г.

Найдем количество вещества водорода и неизвестного элемента, обозначив за «х» молярную массу последнего (молярная масса водорода равна 1 г/моль):

Приступая к рассмотрению химических и физических свойств водорода, необходимо отметить, что в привычном состоянии, этот химический элемент находится в газообразном виде. Бесцветный газ водород не имеет запаха, он безвкусен. Впервые данный химический элемент был назван водородом после того, как ученым А. Лавуазье были проведены опыты с водой, по результатам которых, мировая наука узнала, что вода – это многокомпонентная жидкость, в состав которой входит Водород. Событие это произошло в 1787 году, но задолго до этой даты водород был известен ученым под названием «горючий газ».

Водород в природе

По данным ученых, водород содержится в земной коре и в воде (приблизительно 11,2% в общем объеме воды). Этот газ входит в состав многих полезных ископаемых, которые человечество на протяжении веков извлекает из недр земли. Частично свойства водорода характерны для нефти, природных газов и глины, для организмов животных и растений. Но в чистом виде, то есть, не соединенный с другими химическими элементами таблицы Менделеева, этот газ встречается крайне редко в природе. Этот газ может выходить на поверхность земли при извержении вулканов. Свободный водород в ничтожных количествах присутствует в атмосфере.

Химические свойства водорода

Поскольку химические свойства водорода неоднообразны, то этот химический элемент относится как к I группе системы Менделеева, так и к VII группе системы. Являясь представителем первой группы, водород является, по сути, щелочным металлом, который имеет степень окисления +1 в большей части соединений, в которые он входит. Такая же валентность характерна для натрия и других щелочных металлов. Ввиду таких химических свойств, водород рассматривается, как элемент, подобный этим металлам.

Если же речь идет о гидридах металлов, то ион водорода имеет отрицательную валентность – его степень окисления равна -1. Na+H- строится по той же схеме, что и хлориду Na+Cl-. Этот факт и является причиной того, чтобы отнести водород к VII группе системы Менделеева. Водород, будучи в состоянии молекулы, при условии, что он пребывает в обычной среде, малоподвижен, и может соединяться исключительно с неметаллами, более активными за него. К таким металлам можно отнести фтор, при наличии света, водород соединяется с хлором. Если водород нагревать, то он становится более активным, вступая в реакции со многими элементами периодической системы Менделеева.

Атомарный водород проявляет более активные химические свойства, чем молекулярный. Молекулы кислорода с формируют воду - Н2 + 1/2О2 = Н2О. При взаимодействии водорода с галогенами, образуются галогеноводороды Н2 + Cl2 = 2НСl, причем в эту реакцию водород вступает при отсутствии света и при достаточно больших отрицательных температурах – до - 252°С. Химические свойства водорода позволяют использовать его для восстановления многих металлов, поскольку вступая в реакцию, водород поглощает у оксидов металлов кислород, например, CuO + H2 = Cu + H2O. Водород участвует в формировании аммиака, взаимодействуя с азотом в реакции ЗН2 + N2 = 2NН3, но при условии, что будет использоваться катализатор, а температура и давление – повышены.

Энергичная реакция происходит при взаимодействии водорода с серой в реакции Н2 + S = H2S, результатом которой становится сероводород. Немного менее активно взаимодействие водорода с теллуром и селеном. Если нет катализатора, то вступает в реакцию с чистым углеродом, водород только при условии, что будут созданы высокие температуры. 2Н2 + С (аморфный) = СН4 (метан). В процессе активности водорода с некоторыми щелочными и прочими металлами, получаются гидриды, например, Н2 + 2Li = 2LiH.

Физические свойства водорода

Водород является очень легким химическим веществом. По крайней мере, ученые утверждают, что на данный момент, нет легче вещества, чем водород. Его масса в 14,4 раза легче за воздух, плотность составляет 0,0899 г/л при 0°С. При температурах в -259,1°С водород способен плавится – это очень критическая температура, которая не характерна для преобразования большинства химических соединений из одного состояния в другое. Только такой элемент, как гелий, превышает физические свойства водорода в этом плане. Сжижение водорода затруднительно, так как его критическая температура равна (-240°С). Водород – наиболее теплопродный газ из всех, известных человечеству. Все, описанные выше свойства, являются наиболее значимыми физическими свойствами водорода, которые используются человеком для конкретных целей. Также данные свойства являются наиболее актуальными для современной науки.

МИНСКИЙ КОЛЛЕДЖ ТЕХНОЛОГИИ И ДИЗАЙНА ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

Реферат

по дисциплине: Химия

Тема: «Водород и его соединения»

Подготовила: учащаяся Iкурса343 группы

Вискуп Елена

Проверил: Алябьева Н.В.

Минск 2009

Строение атома водорода в периодической системе

Степени окисления

Распространенность в природе

Водород как простое вещество

Соединения водорода

Список литературы


Строение атома водорода в периодической системе

Первый элемент периодической системы (1-й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе, поэтому в таблицах условно помещается в IА группу и/или VIIA-группу.

Атом водорода наименьший по размерам и самый легкий среди атомов всех элементов. Электронная формула атома 1s 1 . Обычная форма существования элемента в свободном состоянии - двухатомная молекула.

Степени окисления

Атом водорода в соединениях с более электроотрицательными элементами проявляет степень окисления +1, например HF, H 2 O и др. А в соединениях с металлами-гидридах - степень окисления атома водорода равна -1, например NaH, CaH 2 и др. Обладает значением электроотрицательности средним между типичными металлами и неметаллами. Способен каталитически восстанавливать в органических растворителях, таких как уксусная кислота или спирт, многие органические соединения: ненасыщенные соединения до насыщенных, некоторые соединения натрия-до аммиака или аминов.

Распространенность в природе

Природный водород состоит из двух стабильных изотопов - протия 1 Н, дейтерия 2 Н и трития 3 Н. По-другому дейтерий обозначают как D, а тритий как Т. Возможны различные комбинации, например НТ, HD, TD, H 2 , D 2 , T 2 . Водород больше распространен в природе в виде различных соединений с серой (H 2 S), кислородом (в виде воды), углеродом, азотом и хлором. Реже в виде соединений с фосфором, йодом, бромом и другими элементами. Входит в состав всех растительных и животных организмов, нефти, ископаемых углей, природного газа, ряда минералов и пород. В свободном состоянии встречается очень редко в небольших количествах – в вулканических газах и продуктах разложения органических остатков. Водород является самым распространенным элементом во Вселенной (около 75%). Он входит в состав Солнца и большинства звезд, а также планет Юпитера и Сатурна, которые в основном состоят из водорода. На отдельных планетах водород может существовать в твердом виде.

Водород как простое вещество

Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Физические свойства - газ без цвета и запаха. Быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Обладает высокой теплопроводностью.

Химические свойства . В обычном состоянии при низких температурах малоактивен, без нагревания реагирует с фтором и хлором (при наличии света).

H 2 + F 2 2HF H 2 +Cl 2 hv 2HCl

С неметаллами взаимодействует активнее, чем с металлами.

При взаимодействии с различными веществами может проявлять как окислительные, так и восстановительные свойства.


Соединения водорода

Одним из соединений водорода являются галогены. Они образуются при соединении водорода с элементами VIIA группы. HF, HCl, HBr и HIпредставляют собой бесцветные газы, хорошо растворимые в воде.

Cl 2 + H 2 OHClO + HCl; HClO-хлорная вода

Так как HBr и HI типичные восстановители, то их нельзя получить по обменной реакции как HCl.

CaF 2 + H 2 SO 4 = CaSO 4 + 2HF

Вода - самое распространенное в природе соединение водорода.

2Н 2 + О 2 = 2Н 2 О

Не имеет ни цвета, ни вкуса, ни запаха. Очень слабый электролит, но активно реагирует со многими металлами и неметаллами, основными и кислотными оксидами.

2Н 2 О+2Na = 2NaOH + H 2

Н 2 О + BaO = Ba(OH) 2

3Н 2 О + P 2 O 5 = 2H 3 PO 4

Тяжелая вода (D 2 O) – изотопная разновидность воды. Растворимость веществ в тяжелой воде значительно меньше чем в обычной. Тяжелая вода ядовита, так как замедляет биологические процессы в живых организмах. Накапливается в остатке электролиза при многоразовом электролизе воды. Используется как теплоноситель и замедлитель нейтронов в ядерных реакторах.

Гидриды – взаимодействие водорода с металлами (при высокой температуре)или менее электроотрицательными чем водород неметаллами.

Si + 2H 2 =SiH 4

Сам же водород был открыт в первой половине 16в. Парацельсом. В 1776 Г. Кавендиш впервые исследовал его свойства, в 1783-1787 А. Лавуазье показал, что водород входит в состав воды, включил его в список химических элементов и предложил название «гидроген».


Список литературы

1. М.Б. Волович, О.Ф. Кабардин, Р.А. Лидин, Л.Ю. Аликберова, В.С. Рохлов, В.Б. Пятунин, Ю.А. Симагин, С.В Симонович/Справочник школьника/Москва «АСТ-ПРЕСС КНИГА» 2003.

2. И.Л. Кнуняц /Химическая энциклопедия/Москва «Советская энциклопедия»1988

3. И.Е. Шиманович /Химия 11/Минск «Народная асвета»2008

4. Ф.Коттон, Дж. Уилкинсон/Современная неорганическая химия/ Москва «Мир» 1969