Я самая красивая

Ученые создавшие ядерное оружие. Ядерная бомба: атомное оружие на страже мира. История создания оружия

Ученые создавшие ядерное оружие. Ядерная бомба: атомное оружие на страже мира. История создания оружия

«Я не самый простой человек, — заметил однажды американский физик Исидор Айзек Раби. — Но по сравнению с Оппенгеймером я весьма и весьма прост». Роберт Оппенгеймер был одной из центральных фигур ХХ века, сама «сложность» которого вобрала в себя политические и этические противоречия страны.

Во время Второй мировой войны блестящий физик Ажулиус Роберт Оппенгеймер возглавлял разработки американских ядерщиков по созданию первой в истории человечества атомной бомбы. Ученый вел уединенный и замкнутый образ жизни, и это породило подозрения в измене.

Атомное оружие — результат всего предшествующего развития науки и техники. Открытия, которые непосредственно связаны с его возникновением, были сделаны в конце XIX в. Огромную роль в раскрытии тайны атома сыграли исследования А. Беккереля, Пьера Кюри и Марии Склодовской-Кюри, Э. Резерфорда и др.

В начале 1939 года французский физик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии, как обычное взрывное вещество. Это заключение стало толчком для разработок по созданию ядерного оружия.

Европа была накануне Второй мировой войны, и потенциальное обладание таким мощным оружием подталкивало милитаристские круги на быстрейшее его создание, но тормозом слала проблема наличия большого количества урановой руды для широкомасштабных исследований. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии, понимая, что без достаточного количества урановой руды невозможно вести работы, США в сентябре 1940 года закупили большое количество требуемой руды по подставным документам у Бельгии, что и позволило им вести работы над созданием ядерного оружия полным ходом.

С 1939 по 1945, на проект Манхэттен было потрачено более двух биллионов долларов. В Oak Ridge, штат Теннеси, был построен огромный завод по очистке урана. H.C. Urey и Ernest O. Lawrence (изобретатель циклотрона) предложили способ очистки, основанный на принципе газовой диффузии с последующим магнитным разделением двух изотопов. Газовая центрифуга отделяла легкий Уран-235 от более тяжелого Урана-238.

На территории Соединенных Штатов, в Лос-Аламосе, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. Над проектом работало множество учёных, главным же был Роберт Оппенгеймер. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Работа в Лос-Аламосе, где находилась лаборатория, не прекращалась ни на минуту. В Европе тем временем шла Вторая мировая война, и Германия проводила массовые бомбардировки городов Англии, что подвергало опасности английский атомный проект “Tub Alloys”, и Англия добровольно передала США свои разработки и ведущих ученых проекта, что позволило США занять ведущее положение в развитии ядерной физики (создания ядерного оружия).

«Отец атомной бомбы», он в то же время был ярым противником американской ядерной политики. Нося звание одного из самых выдающихся физиков своего времени, с удовольствием изучал мистицизм древних индийских книг. Коммунист, путешественник и убежденный американский патриот, очень духовный человек, он, тем не менее, был готов предать своих друзей, чтобы защититься от нападков антикоммунистов. Ученый, разработавший план причинения наибольшего ущерба Хиросиме и Нагасаки, проклинал себя за «невинную кровь на своих руках».

Писать об этом противоречивом человеке задача непростая, но интересная, и ХХ век отмечен рядом книг о нем. Однако насыщенная жизнь ученого продолжает привлекать биографов.

Оппенгеймер родился в Нью-Йорке в 1903 году в семье обеспеченных и образованных евреев. Оппенгеймер воспитывался в любви к живописи, музыке, в атмосфере интеллектуальной любознательности. В 1922 году он поступил в Гарвардский университет и всего за три года получил диплом с отличием, его основным предметом была химия. В последующие несколько лет не по годам развитой молодой человек побывал в нескольких странах Европы, где работал с физиками, занимавшимися проблемами исследований атомных явлений в свете новых теорий. Всего через год после окончания университета Оппенгеймер опубликовал научную работу, которая показала, насколько глубоко он разбирается в новых методах. Вскоре он, совместно со знаменитым Максом Борном, разработал важнейшую часть квантовой теории, известную под названием метода Борна-Оппенгеймера. В 1927 году его выдающаяся докторская диссертация принесла ему всемирную славу.

В 1928 работал в Цюрихском и Лейденском университетах. В том же году возвратился в США. С 1929 по 1947 Оппенгеймер преподавал в Калифорнийском университете и Калифорнийском технологическом институте. С 1939 по 1945 активно участвовал в работах по созданию атомной бомбы в рамках Манхэттенского проекта; возглавляя специально созданную для этого Лос-Аламосскую лабораторию.

В 1929 году Оппенгеймер, восходящая звезда науки, принял предложения двух из нескольких боровшихся за право пригласить его университетов. Весенний семестр он преподавал в оживленном, молодом Калифорнийском технологическом институте в Пасадене, а осенний и зимний - в Калифорнийском университете в Беркли, где он стал первым преподавателем квантовой механики. По сути дела, ученому-эрудиту пришлось какое-то время приспосабливаться, постепенно снижая уровень обсуждения до возможностей своих студентов. В 1936 году он влюбился в Джин Тэтлок, беспокойную и подверженную переменам настроения молодую женщину, чей страстный идеализм нашел выход в коммунистической деятельности. Как многие думающие люди того времени, Оппенгеймер изучал идеи левого движения в качестве одной из возможных альтернатив, хотя и не вступал в компартию, что сделали его младший брат, невестка и многие из его друзей. Его интерес к политике, как и умение читать на санскрите, был естественным результатом постоянного стремления к знаниям. По его собственным словам, он был также глубоко встревожен взрывом антисемитизма в фашистской Германии и Испании и вкладывал по 1000 долларов в год из своего ежегодного заработка в 15 000 долларов в проекты, связанные с деятельностью коммунистических групп. После встречи с Китти Харрисон, ставшей в 1940 году его женой, Оппенгеймер расстался с Джин Тэтлок и отошел от круга ее друзей с левыми убеждениями.

В 1939 году Соединенные Штаты узнали, что в рамках подготовки к глобальной войне гитлеровская Германия открыла расщепление атомного ядра. Оппенгеймер и другие ученые сразу же догадались, что немецкие физики попытаются получить управляемую цепную реакцию, которая могла стать ключом с созданию оружия, гораздо более разрушительного, чем любое существовавшее на тот момент. Заручившись поддержкой великого научного гения, Альберта Эйнштейна, обеспокоенные ученые в своем знаменитом письме предупредили Президента Франклина Д. Рузвельта об опасности. Санкционируя финансирование проектов, направленных на создание неиспытанного оружия, президент действовал в обстановке строгой секретности. По иронии судьбы, совместно с американскими учеными в лабораториях, разбросанных по всей стране, работали многие ведущие ученые мира, вынужденные бежать со своей родины. Одна часть университетских групп исследовала возможность создания ядерного реактора, другие взялись за решение проблемы отделения изотопов урана, необходимых для высвобождения энергии в цепной реакции. Оппенгеймеру, который до этого был занят теоретическими проблемами, предложили заняться организацией широкого фронта работ только в начале 1942 года.

Программа армии США по созданию атомной бомбы получила кодовое название «Проект Манхэттен», ее возглавил 46-летний полковник Лесли Р. Гровс, профессиональный военный. Гровс, который характеризовал ученых, работавших над созданием атомной бомбы, как «дорогостоящее сборище чокнутых», однако, признавал, что Оппенгеймер обладал способностью, до тех пор не востребованной, управлять своими коллегами-спорщиками, когда накалялась атмосфера. Физик предложил, чтобы всех ученых объединили в одной лаборатории в тихом провинциальном городке Лос-Аламос, штат Нью-Мексико, в районе, который он хорошо знал. К марту 1943 года закрытый пансион для мальчиков был превращен в строго охраняемый секретный центр, научным директором которого стал Оппенгеймер. Настояв на свободном обмене информацией между учеными, которым строго-настрого запрещалось покидать пределы центра, Оппенгеймер создал атмосферу доверия и взаимного уважения, что способствовало удивительным успехам в работе. Не щадя себя, он оставался руководителем всех направлений этого сложного проекта, хотя от этого сильно пострадала его личная жизнь. Но для смешанной группы ученых - среди которых было больше десятка тогдашних или будущих нобелевских лауреатов и из которых редкий человек не обладал ярко выраженной индивидуальностью -Оппенгеймер был необыкновенно преданным делу руководителем и тонким дипломатом. Большинство из них согласились бы, что львиная доля заслуги в окончательном успехе проекта принадлежит ему. К 30 декабря 1944 года Гровс, ставший к тому времени генералом, мог с уверенностью сказать, что на затраченные два миллиарда долларов будет создана готовая к действию бомба к 1 августа следующего года. Но когда в мае 1945 года Германия признала свое поражение, многие из работавших в Лос-Аламосе исследователей стали задумываться об использовании нового оружия. Ведь, вероятно, Япония вскоре капитулировала бы и без атомной бомбардировки. Нужно ли Соединенным Штатам становиться первой в мире страной, применившей такое ужасное устройство? Гарри С. Трумэн, ставший президентом после смерти Рузвельта, назначил комитет для изучения возможных последствий использования атомной бомбы, в который вошел и Оппенгеймер. Специалисты решили рекомендовать сбросить атомную бомбу без предупреждения на крупный японский военный объект. Было получено и согласие Оппенгеймера.

Все эти тревоги были бы, конечно, спорными, если бы бомба не сработала. Испытание первой в мире атомной бомбы было проведено 16 июля 1945 года примерно в 80 километрах от авиационной базы в Аламогордо, штат Нью-Мексико. Испытываемое устройство, названное за его выпуклую форму «Толстяком», прикрепили к стальной вышке, установленной в пустынной местности. Ровно в 5.30 утра детонатор с дистанционным управлением привел бомбу в действие. С отдающимся эхом грохотом на участке диаметром в 1,6 километра в небо взметнулся гигантский фиолетово-зелено-оранжевый огненный шар. Земля содрогнулась от взрыва, вышка исчезла. К небу стремительно поднялся белый столб дыма и стал постепенно расширяться, принимая на высоте около 11 километров устрашающую форму гриба. Первый ядерный взрыв поразил научных и военных наблюдателей, находившихся рядом с местом испытания, и вскружил им головы. Но Оппенгеймеру вспомнились строки из индийской эпической поэмы «Бхагавадгита»: «Я стану Смертью, истребителем миров». До конца его жизни к удовлетворению от научных успехов всегда примешивалось чувство ответственности за последствия.

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолета (один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш".

Через три дня после того, как «Малыш» был взорван в Хиросиме, точная копия первого «Толстяка» была сброшена на город Нагасаки. 15 августа Япония, чья решимость была окончательно сломлена этим новым оружием, подписала безоговорочную капитуляцию. Однако уже стали слышны голоса скептиков, и сам Оппенгеймер предсказал через два месяца после Хиросимы, что «человечество проклянет названия Лос-Аламос и Хиросима».

Весь мир был шокирован взрывами в Хиросиме и Нагасаки. Что характерно, Оппенгеймеру удалось сочетать в себе переживания по поводу испытания бомбы на мирных гражданах и радости, что оружие наконец-то проверено.

Тем не менее на следующий год он принял назначение на пост председателя научного совета Комиссии по атомной энергии (КАЭ), став тем самым наиболее влиятельным советником правительства и военных по ядерным проблемам. Пока Запад и возглавляемый Сталиным Советский Союз всерьез готовились к холодной войне, каждая из сторон сосредоточила свое внимание на гонке вооружений. Хотя многие из ученых, входивших в «Проект Манхэттен», не поддерживали идею создания нового оружия, бывшие сотрудники Оппенгеймера Эдвард Теллер и Эрнест Лоуренс посчитали, что национальная безопасность США требует скорейшей разработки водородной бомбы. Оппенгеймер пришел в ужас. С его точки зрения, две ядерные державы и так уже противостояли друг другу, как «два скорпиона в банке, каждый в состоянии убить другого, но только с риском для собственной жизни». С распространением нового оружия в войнах больше не было бы победителей и побежденных - только жертвы. И «отец атомной бомбы» сделал публичное заявление, что он против разработки водородной бомбы. Всегда чувствовавший себя при Оппенгеймере не в своей тарелке и явно завидовавший его достижениям, Теллер стал прилагать усилия, чтобы возглавить новый проект, подразумевая, что Оппенгеймер больше не должен принимать участие в работе. Он рассказал следователям ФБР, что его соперник своим авторитетом удерживает ученых от работы над водородной бомбой, и открыл секрет, что в молодости Оппенгеймер страдал приступами сильной депрессии. Когда Президент Трумэн дал в 1950 году согласие на финансирование работ по созданию водородной бомбы, Теллер мог праздновать победу.

В 1954 году враги Оппенгеймера развернули кампанию по его удалению от власти, что им удалось — после занявших месяц поисков "черных пятен" в его личной биографии. В результате было организовано показное дело, в котором против Оппенгеймера выступали многие влиятельные политические и научные деятели. Как позже высказался по этому поводу Альберт Эйнштейн: «Проблема Оппенгеймера заключалась в том, что он любил женщину, которая не любила его: правительство США».

Позволив расцвести таланту Оппенгеймера, Америка обрекла его на погибель.


Оппенгеймер известен не только как создатель американской атомной бомбы. Ему принадлежат многие работы по квантовой механике, теории относительности, физике элементарных частиц, теоретической астрофизике. В 1927 он разработал теорию взаимодействия свободных электронов с атомами. Совместно с Борном создал теорию строения двухатомных молекул. В 1931 он и П.Эренфест сформулировали теорему, применение которой к ядру азота показало, что протонно-электронная гипотеза строения ядер приводит к ряду противоречий с известными свойствами азота. Исследовал внутреннюю конверсию g -лучей. В 1937 разработал каскадную теорию космических ливней, в 1938 сделал первый расчет модели нейтронной звезды, в 1939 предсказал существование «черных дыр».

Оппенгеймеру принадлежит ряд популярных книг, в том числе - Наука и обыденное познание (Science and the Common Understanding , 1954), Открытый разум (The Open Mind , 1955), Некоторые размышления о науке и культуре (Some Reflections on Science and Culture , 1960). Умер Оппенгеймер в Принстоне 18 февраля 1967.

Работы над атомными проектами в СССР и США начались одновременно. В августе 1942 года в одном из зданий во дворе Казанского университета начала работать секретная «Лаборатория №2». Её руководителем был назначен Игорь Курчатов.

В советские времена утверждалось, что СССР решил свою атомную задачу совершенно самостоятельно, а Курчатов считался «отцом» отечественной атомной бомбы. Хотя и ходили слухи о некоторых украденных у американцев секретах. И только в 90-х годах, спустя 50 лет, один из главных действующих тогда лиц - Юлий Харитон рассказал о существенной роли разведки в ускорении отставшего советского проекта. А американские научные и технические результаты добывал приехавший в английской группе Клаус Фукс.

Информация из-за рубежа помогла руководству страны принять трудное решение - начать работы по ядерному оружию в ходе тяжелейшей войны. Разведка позволила нашим физикам сэкономить время, помогла избежать "осечки" при первом атомном испытании, имевшем огромное политическое значение.

В 1939 году была открыта цепная реакция деления ядер урана-235, сопровождающаяся выделением колоссальной энергии. Вскоре после этого со страниц научных журналов начали исчезать статьи по ядерной физике. Это могло свидетельствовать о реальной перспективе создания атомного взрывчатого вещества и оружия на его основе.

После открытия советскими физиками спонтанного деления ядер урана-235 и определения критической массы в резидентуру по инициативе начальника НТР

Л. Квасникова была разослана соответствующая директива.

В ФСБ России (бывший КГБ СССР) под грифом "хранить вечно" покоятся 17 томов архивного дела N 13676, где документально зафиксировано, кто и как привлекал граждан США к работе на советскую разведку. Лишь немногие из высшего руководства КГБ СССР имели доступ к материалам этого дела, гриф секретности с которого снят лишь недавно. Первые сведения о работах по созданию американской атомной бомбы советская разведка получила осенью 1941 года. А уже в марте 1942 года обширная информация о ведущихся в США и Англии исследованиях легла на стол И. В. Сталина. По словам Ю. Б. Харитона, в тот драматический период надежнее было использовать для первого нашего взрыва уже испытанную американцами схему бомбы. "Учитывая государственные интересы, любое другое решение было тогда недопустимым. Заслуга Фукса и других наших помощников за рубежом несомненна. Однако мы реализовали американскую схему при первом испытании не столько из технических, сколько из политических соображений.

Сообщение о том, что Советский Союз овладел секретом ядерного оружия вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план "Тройан", в котором предусматривалось начать боевые действия 1 января 1950 года. На то время США располагало 840 стратегическими бомбардировщиками в строевых частях, 1350 - в резерве и свыше 300 атомными бомбами.

В районе г. Семипалатинска был построен испытательный полигон. Ровно в 7.00 утра 29 августа 1949 года на этом полигоне было подорвано первое советское ядерное устройство под кодовым названием "РДС-1".

План "Тройан", согласно которому на 70 городов СССР должны были быть сброшены атомные бомбы, был сорван из-за угрозы ответного удара. Событие, происшедшее на Семипалатинском полигоне, известило мир о создании в СССР ядерного оружия.

Внешняя разведка не только привлекла внимание руководства страны к проблеме создания на Западе атомного оружия и тем самым инициировала проведение подобных работ в нашей стране. Благодаря информации внешней разведки, по признанию академиков А.Александрова, Ю.Харитона и других, И.Курчатов не сделал больших ошибок, нам удалось избежать тупиковых направлений в создании атомного оружия и создать в более короткие сроки атомную бомбу в СССР, всего за три года, тогда как США на это потратили четыре года, израсходовав на ее создание пять миллиардов долларов.

Как отметил академик Ю.Харитон в интервью газете "Известия" от 8 декабря 1992 г., первый советский атомный заряд был изготовлен по американскому образцу с помощью сведений, полученных от К.Фукса. По словам академика, когда вручались правительственные награды участникам советского атомного проекта, Сталин, удовлетворенный тем, что американской монополии в этой области не существует, заметил: "Если бы мы опоздали на один-полтора года, то, наверное, испробовали бы этот заряд на себе".

Мир атома настолько фантастичен, что для его понимания требуется коренная ломка привычных понятий о пространстве и времени. Атомы так малы, что если бы каплю воды можно было увеличить до размеров Земли, то каждый атом в этой капле был бы меньше апельсина. В самом деле, одна капля воды состоит из 6000 миллиардов миллиардов (6000000000000000000000) атомов водорода и кислорода. И тем не менее, несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное «солнце» - ядро атома.

Вокруг этого атомного «солнца» вращаются крохотные «планеты» - электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной - протонов и нейтронов (они имеют объединяющее название - нуклоны). Электрон и протон - заряженные частицы, причем количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон - отрицательно. Нейтрон не несет электрического заряда и вследствие этого имеет очень большую проницаемость.

В атомной шкале измерений масса протона и нейтрона принята за единицу. Атомный вес любого химического элемента поэтому зависит от количества протонов и нейтронов, заключенных в его ядре. Например, атом водорода, ядро которого состоит только из одного протона, имеет атомную массу равную 1. Атом гелия, с ядром из двух протонов и двух нейтронов, имеет атомную массу, равную 4.

Ядра атомов одного и того же элемента всегда содержат одинаковое число протонов, но число нейтронов может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но отличающиеся по числу нейтронов и относящиеся к разновидностям одного и того же элемента, называются изотопами. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа.

Может возникнуть вопрос: почему ядро атома не разваливается? Ведь входящие в него протоны - электрически заряженные частицы с одинаковым зарядом, которые должны отталкиваться друг от друга с большой силой. Объясняется это тем, что внутри ядра действуют еще и так называемые внутриядерные силы, притягивающие частицы ядра друг к другу. Эти силы компенсируют силы отталкивания протонов и не дают ядру самопроизвольно разлететься.

Внутриядерные силы очень велики, но действуют только на очень близком расстоянии. Поэтому ядра тяжелых элементов, состоящие из сотен нуклонов, оказываются нестабильными. Частицы ядра находятся здесь в беспрерывном движении (в пределах объема ядра), и если добавить им какое-то дополнительное количество энергии, они могут преодолеть внутренние силы - ядро разделится на части. Величину этой избыточной энергии называют энергией возбуждения. Среди изотопов тяжелых элементов есть такие, которые как бы находятся на самой грани самораспада. Достаточно лишь небольшого «толчка», например, простого попадания в ядро нейтрона (причем он даже не должен разгоняться до большой скорости), чтобы пошла реакция ядерного деления. Некоторые из этих «делящихся» изотопов позже научились получать искусственно. В природе же существует только один такой изотоп - это уран-235.

Уран был открыт в 1783 году Клапротом, который выделил его из урановой смолки и назвал в честь недавно открытой планеты Уран. Как оказалось в дальнейшем, это был, собственно, не сам уран, а его оксид. Чистый уран - металл серебристо-белого цвета - был получен
только в 1842 году Пелиго. Новый элемент не обладал никакими замечательными свойствами и не привлекал к себе внимания вплоть до 1896 года, когда Беккерель открыл явление радиоактивности солей урана. После этого уран сделался объектом научных исследований и экспериментов, но практического применения по-прежнему не имел.

Когда в первой трети XX века физикам более или менее стало понятно строение атомного ядра, они прежде всего попробовали осуществить давнюю мечту алхимиков - постарались превратить один химический элемент в другой. В 1934 году французские исследователи супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук о следующем опыте: при бомбардировке пластин алюминия альфа-частицами (ядрами атома гелия) атомы алюминия превращались в атомы фосфора, но не обычные, а радиоактивные, которые свою очередь переходили в устойчивый изотоп кремния. Таким образом, атом алюминия, присоединив один протон и два нейтрона, превращался в более тяжелый атом кремния.

Этот опыт навел на мысль, что если «обстреливать» нейтронами ядра самого тяжелого из существующих в природе элементов - урана, то можно получить такой элемент, которого в естественных условиях нет. В 1938 году немецкие химики Отто Ган и Фриц Штрассман повторили в общих чертах опыт супругов Жолио-Кюри, взяв вместо алюминия уран. Результаты эксперимента оказались совсем не те, что они ожидали - вместо нового сверхтяжелого элемента с массовым числом больше, чем у урана, Ган и Штрассман получили легкие элементы из средней части периодической системы: барий, криптон, бром и некоторые другие. Сами экспериментаторы не смогли объяснить наблюдаемое явление. Только в следующем году физик Лиза Мейтнер, которой Ган сообщил о своих затруднениях, нашла правильное объяснение наблюдаемому феномену, предположив, что при обстреле урана нейтронами происходит расщепление (деление) его ядра. При этом должны были образовываться ядра более легких элементов (вот откуда брались барий, криптон и другие вещества), а также выделяться 2-3 свободных нейтрона. Дальнейшие исследования позволили детально прояснить картину происходящего.

Природный уран состоит из смеси трех изотопов с массами 238, 234 и 235. Основное количество урана приходится на изотоп-238, в ядро которого входят 92 протона и 146 нейтронов. Уран-235 составляет всего 1/140 природного урана (0, 7% (он имеет в своем ядре 92 протона и 143 нейтрона), а уран-234 (92 протона, 142 нейтрона) лишь - 1/17500 от общей массы урана (0, 006%. Наименее стабильным из этих изотопов является уран-235.

Время от времени ядра его атомов самопроизвольно делятся на части, вследствие чего образуются более легкие элементы периодической системы. Процесс сопровождается выделением двух или трех свободных нейтронов, которые мчатся с огромной скоростью - около 10 тыс. км/с (их называют быстрыми нейтронами). Эти нейтроны могут попадать в другие ядра урана, вызывая ядерные реакции. Каждый изотоп ведет себя в этом случае по-разному. Ядра урана-238 в большинстве случаев просто захватывают эти нейтроны без каких-либо дальнейших превращений. Но примерно в одном случае из пяти при столкновении быстрого нейтрона с ядром изотопа-238 происходит любопытная ядерная реакция: один из нейтронов урана-238 испускает электрон, превращаясь в протон, то есть изотоп урана обращается в более
тяжелый элемент - нептуний-239 (93 протона + 146 нейтронов). Но нептуний нестабилен - через несколько минут один из его нейтронов испускает электрон, превращаясь в протон, после чего изотоп нептуния обращается в следующий по счету элемент периодической системы - плутоний-239 (94 протона + 145 нейтронов). Если же нейтрон попадает в ядро неустойчивого урана-235, то немедленно происходит деление - атомы распадаются с испусканием двух или трех нейтронов. Понятно, что в природном уране, большинство атомов которого относятся к изотопу-238, никаких видимых последствий эта реакция не имеет - все свободные нейтроны окажутся в конце концов поглощенными этим изотопом.

Ну а если представить себе достаточно массивный кусок урана, целиком состоящий из изотопа-235?

Здесь процесс пойдет по-другому: нейтроны, выделившиеся при делении нескольких ядер, в свою очередь, попадая в соседние ядра, вызывают их деление. В результате выделяется новая порция нейтронов, которая расщепляет следующие ядра. При благоприятных условиях эта реакция протекает лавинообразно и носит название цепной реакции. Для ее начала может быть достаточно считанного количества бомбардирующих частиц.

Действительно, пусть уран-235 бомбардируют всего 100 нейтронов. Они разделят 100 ядер урана. При этом выделится 250 новых нейтронов второго поколения (в среднем 2, 5 за одно деление). Нейтроны второго поколения произведут уже 250 делений, при котором выделится 625 нейтронов. В следующем поколении оно станет равным 1562, затем 3906, далее 9670 и т.д. Число делений будет увеличиваться безгранично, если процесс не остановить.

Однако реально лишь незначительная часть нейтронов попадает в ядра атомов. Остальные, стремительно промчавшись между ними, уносятся в окружающее пространство. Самоподдерживающаяся цепная реакция может возникнуть только в достаточно большом массиве урана-235, обладающим, как говорят, критической массой. (Эта масса при нормальных условиях равна 50 кг.) Важно отметить, что деление каждого ядра сопровождается выделением огромного количества энергии, которая оказывается примерно в 300 миллионов раз больше энергии, затраченной на расщепление! (Подсчитано, что при полном делении 1 кг урана-235 выделяется столько же тепла, сколько при сжигании 3 тыс. тонн угля.)

Этот колоссальный выплеск энергии, освобождающейся в считанные мгновения, проявляет себя как взрыв чудовищной силы и лежит в основе действия ядерного оружия. Но для того чтобы это оружие стало реальностью, необходимо, чтобы заряд состоял не из природного урана, а из редкого изотопа - 235 (такой уран называют обогащенным). Позже было установлено, что чистый плутоний также является делящимся материалом и может быть использован в атомном заряде вместо урана-235.

Все эти важные открытия были сделаны накануне Второй мировой войны. Вскоре в Германии и в других странах начались секретные работы по созданию атомной бомбы. В США этой проблемой занялись в 1941 году. Всему комплексу работ было присвоено наименование «Манхэттенского проекта».

Административное руководство проектом осуществлял генерал Гровс, а научное - профессор Калифорнийского университета Роберт Оппенгеймер. Оба хорошо понимали огромную сложность стоящей перед ними задачи. Поэтому первой заботой Оппенгеймера стало комплектование высокоинтеллектуального научного коллектива. В США тогда было много физиков, эмигрировавших из фашистской Германии. Нелегко было привлечь их к созданию оружия, направленного против их прежней родины. Оппенгеймер лично говорил с каждым, пуская в ход всю силу своего обаяния. Вскоре ему удалось собрать небольшую группу теоретиков, которых он шутливо называл «светилами». И в самом деле, в нее входили крупнейшие специалисты того времени в области физики и химии. (Среди них 13 лауреатов Нобелевской премии, в том числе Бор, Ферми, Франк, Чедвик, Лоуренс.) Кроме них, было много других специалистов самого разного профиля.

Правительство США не скупилось на расходы, и работы с самого начала приняли грандиозный размах. В 1942 году была основана крупнейшая в мире исследовательская лаборатория в Лос-Аламосе. Население этого научного города вскоре достигло 9 тысяч человек. По составу ученых, размаху научных экспериментов, числу привлекаемых к работе специалистов и рабочих Лос-Аламосская лаборатория не имела себе равных в мировой истории. «Манхэттенский проект» имел свою полицию, контрразведку, систему связи, склады, поселки, заводы, лаборатории, свой колоссальный бюджет.

Главная цель проекта состояла в получении достаточного количества делящегося материала, из которого можно было бы создать несколько атомных бомб. Кроме урана-235 зарядом для бомбы, как уже говорилось, мог служить искусственный элемент плутоний-239, то есть бомба могла быть как урановой, так и плутониевой.

Гровс и Оппенгеймер согласились, что работы должны вестись одновременно по двум направлениям, поскольку невозможно наперед решить, какое из них окажется более перспективным. Оба способа принципиально отличались друг от друга: накопление урана-235 должно было осуществляться путем его отделения от основной массы природного урана, а плутоний мог быть получен только в результате управляемой ядерной реакции при облучении нейтронами урана-238. И тот и другой путь представлялся необычайно трудным и не сулил легких решений.

В самом деле, как можно отделить друг от друга два изотопа, которые лишь незначительно отличаются своим весом и химически ведут себя совершенно одинаково? Ни наука, ни техника никогда еще не сталкивались с такой проблемой. Производство плутония тоже поначалу казалось очень проблематичным. До этого весь опыт ядерных превращений сводился к нескольким лабораторным экспериментам. Теперь же предстояло в промышленном масштабе освоить производство килограммов плутония, разработать и создать для этого специальную установку - ядерный реактор, и научиться управлять течением ядерной реакции.

И там и здесь предстояло разрешить целый комплекс сложных задач. Поэтому «Манхэттенский проект» состоял из нескольких подпроектов, во главе которых стояли видные ученые. Сам Оппенгеймер был главой Лос-Аламосской научной лаборатории. Лоуренс заведовал Радиационной лабораторией Калифорнийского университета. Ферми вел в Чикагском университете исследования по созданию ядерного реактора.

Поначалу важнейшей проблемой было получение урана. До войны этот металл фактически не имел применения. Теперь, когда он потребовался сразу в огромных количествах, оказалось, что не существует промышленного способа его производства.

Компания «Вестингауз» взялась за его разработку и быстро добилась успеха. После очистки урановой смолы (в таком виде уран встречается в природе) и получения окиси урана, ее превращали в тетрафторид (UF4), из которого путем электролиза выделялся металлический уран. Если в конце 1941 года в распоряжении американских ученых было всего несколько граммов металлического урана, то уже в ноябре 1942 года его промышленное производство на заводах фирмы «Вестингауз» достигло 6000 фунтов в месяц.

Одновременно шла работа над созданием ядерного реактора. Процесс производства плутония фактически сводился к облучению урановых стержней нейтронами, в результате чего часть урана-238 должна была обратиться в плутоний. Источниками нейтронов при этом могли быть делящиеся атомы урана-235, рассеянные в достаточном количестве среди атомов урана-238. Но для того чтобы поддерживать постоянное воспроизводство нейтронов, должна была начаться цепная реакция деления атомов урана-235. Между тем, как уже говорилось, на каждый атом урана-235 приходилось 140 атомов урана-238. Ясно, что у разлетающихся во все стороны нейтронов было гораздо больше вероятности встретить на своем пути именно их. То есть, огромное число выделившихся нейтронов оказывалось без всякой пользы поглощенным основным изотопом. Очевидно, что при таких условиях цепная реакция идти не могла. Как же быть?

Сначала представлялось, что без разделения двух изотопов работа реактора вообще невозможна, но вскоре было установлено одно важное обстоятельство: оказалось, что уран-235 и уран-238 восприимчивы к нейтронам разных энергий. Расщепить ядро атома урана-235 можно нейтроном сравнительно небольшой энергии, имеющим скорость около 22 м/с. Такие медленные нейтроны не захватываются ядрами урана-238 - для этого те должны иметь скорость порядка сотен тысяч метров в секунду. Другими словами уран-238 бессилен помешать началу и ходу цепной реакции в уране-235, вызванной нейтронами, замедленными до крайне малых скоростей - не более 22 м/с. Это явление было открыто итальянским физиком Ферми, который с 1938 года жил в США и руководил здесь работами по созданию первого реактора. В качестве замедлителя нейтронов Ферми решил применить графит. По его расчетам, вылетевшие из урана-235 нейтроны, пройдя через слой графита в 40 см, должны были снизить свою скорость до 22 м/с и начать самоподдерживающуюся цепную реакцию в уране-235.

Другим замедлителем могла служить так называемая «тяжелая» вода. Поскольку атомы водорода, входящие в нее, по размерам и массе очень близки к нейтронам, они могли лучше всего замедлять их. (С быстрыми нейтронами происходит примерно то же, что с шарами: если маленький шар ударяется о большой, он откатывается назад, почти не теряя скорости, при встрече же с маленьким шаром он передает ему значительную часть своей энергии - точно так же нейтрон при упругом столкновении отскакивает от тяжелого ядра лишь незначительно замедляясь, а при столкновении с ядрами атомов водорода очень быстро теряет всю свою энергию.) Однако обычная вода не подходит для замедления, так как ее водород имеет тенденцию поглощать нейтроны. Вот почему для этой цели следует использовать дейтерий, входящий в состав «тяжелой» воды.

В начале 1942 года под руководством Ферми в помещении теннисного корта под западными трибунами Чикагского стадиона началось строительство первого в истории ядерного реактора. Все работы ученые проводили сами. Управление реакцией можно осуществлять единственным способом - регулируя число нейтронов, участвующих в цепной реакции. Ферми предполагал добиться этого с помощью стержней, изготовленных из таких веществ, как бор и кадмий, которые сильно поглощают нейтроны. Замедлителем служили графитовые кирпичи, из которых физики возвели колоны высотой в 3 м и шириной в 1, 2 м. Между ними были установлены прямоугольные блоки с окисью урана. На всю конструкцию пошло около 46 тонн окиси урана и 385 тонн графита. Для замедления реакции служили введенные в реактор стержни из кадмия и бора.

Если бы этого оказалось недостаточно, то для страховки на платформе, расположенной над реактором, стояли двое ученых с ведрами, наполненными раствором солей кадмия - они должны были вылить их на реактор, если бы реакция вышла из-под контроля. К счастью, этого не потребовалось. 2 декабря 1942 года Ферми приказал выдвинуть все контрольные стержни, и эксперимент начался. Через четыре минуты нейтронные счетчики стали щелкать все громче и громче. С каждой минутой интенсивность нейтронного потока становилась больше. Это говорило о том, что в реакторе идет цепная реакция. Она продолжалась в течение 28 минут. Затем Ферми дал знак, и опущенные стержни прекратили процесс. Так впервые человек освободил энергию атомного ядра и доказал, что может контролировать ее по своей воле. Теперь уже не было сомнения, что ядерное оружие - реальность.

В 1943 году реактор Ферми демонтировали и перевезли в Арагонскую национальную лабораторию (50 км от Чикаго). Здесь был вскоре
построен еще один ядерный реактор, в котором в качестве замедлителя использовалась тяжелая вода. Он состоял из цилиндрической алюминиевой цистерны, содержащей 6, 5 тонн тяжелой воды, в которую было вертикально погружено 120 стержней из металлического урана, заключенные в алюминиевую оболочку. Семь управляющих стержней были сделаны из кадмия. Вокруг цистерны располагался графитовый отражатель, затем экран из сплавов свинца и кадмия. Вся конструкция заключалась в бетонный панцирь с толщиной стенок около 2, 5 м.

Эксперименты на этих опытных реакторах подтвердили возможность промышленного производства плутония.

Главным центром «Манхэттенского проекта» вскоре стал городок Ок-Ридж в долине реки Теннеси, население которого за несколько месяцев выросло до 79 тысяч человек. Здесь в короткий срок был построен первый в истории завод по производству обогащенного урана. Тут же в 1943 году был пущен промышленный реактор, вырабатывавший плутоний. В феврале 1944 года из него ежедневно извлекали около 300 кг урана, с поверхности которого путем химического разделения получали плутоний. (Для этого плутоний сначала растворяли, а потом осаждали.) Очищенный уран после этого вновь возвращался в реактор. В том же году в бесплодной унылой пустыне на южном берегу реки Колумбия началось строительство огромного Хэнфордского завода. Здесь размещалось три мощных атомных реактора, ежедневно дававших несколько сот граммов плутония.

Параллельно полным ходом шли исследования по разработке промышленного процесса обогащения урана.

Рассмотрев разные варианты, Гровс и Оппенгеймер решили сосредоточить усилия на двух методах: газодиффузионном и электромагнитном.

Газодиффузионный метод основывался на принципе, известном под названием закона Грэхэма (он был впервые сформулирован в 1829 году шотландским химиком Томасом Грэхэмом и разработан в 1896 году английским физиком Рейли). В соответствии с этим законом, если два газа, один из которых легче другого, пропускать через фильтр с ничтожно малыми отверстиями, то через него пройдет несколько больше легкого газа, чем тяжелого. В ноябре 1942 года Юри и Даннинг из Колумбийского университета создали на основе метода Рейли газодиффузионный метод разделения изотопов урана.

Так как природный уран - твердое вещество, то его сначала превращали во фтористый уран (UF6). Затем этот газ пропускали через микроскопические - порядка тысячных долей миллиметра - отверстия в перегородке фильтра.

Так как разница в молярных весах газов была очень мала, то за перегородкой содержание урана-235 увеличивалось всего в 1, 0002 раза.

Для того чтобы увеличить количество урана-235 еще больше, полученную смесь снова пропускают через перегородку, и количество урана опять увеличивается в 1, 0002 раза. Таким образом, чтобы повысить содержание урана-235 до 99%, нужно было пропускать газ через 4000 фильтров. Это происходило на огромном газодиффузионном заводе в Ок-Ридж.

В 1940 году под руководством Эрнста Лоуренса в Калифорнийском университете начались исследования по разделению изотопов урана электромагнитным методом. Необходимо было найти такие физические процессы, которые позволили бы разделять изотопы, пользуясь разностью их масс. Лоуренс предпринял попытку разделить изотопы, используя принцип масс-спектрографа - прибора, с помощью которого определяют массы атомов.

Принцип его действия сводился к следующему: предварительно ионизированные атомы ускорялись электрическим полем, а затем пропускались через магнитное поле, в котором они описывали окружности, расположенные в плоскости, перпендикулярной направлению поля. Так как радиусы этих траекторий были пропорциональны массе, легкие ионы оказывались на окружностях меньшего радиуса, чем тяжелые. Если на пути атомов размещали ловушки, то можно было таким образом раздельно собирать различные изотопы.

Таков был метод. В лабораторных условиях он дал неплохие результаты. Но строительство установки, на которой разделение изотопов могло бы производиться в промышленных масштабах, оказалось чрезвычайно сложным. Однако Лоуренсу в конце концов удалось преодолеть все трудности. Результатом его усилий стало появление калутрона, который был установлен на гигантском заводе в Ок-Ридже.

Этот электромагнитный завод был построен в 1943 году и оказался едва ли не самым дорогостоящим детищем «Манхэттенского проекта». Метод Лоуренса требовал большого количества сложных, еще не разработанных устройств, связанных с высоким напряжением, высоким вакуумом и сильными магнитными полями. Масштабы затрат оказались огромны. Калутрон имел гигантский электромагнит, длина которого достигала 75 м при весе около 4000 тонн.

На обмотки для этого электромагнита пошло несколько тысяч тонн серебряной проволоки.

Все работы (не считая стоимости серебра на сумму 300 миллионов долларов, которое государственное казначейство предоставило только на время) обошлись в 400 миллионов долларов. Только за электроэнергию, затраченную калутроном, министерство обороны заплатило 10 миллионов. Большая часть оборудования ок-риджского завода превосходила по масштабам и точности изготовления все, что когда-либо разрабатывалось в этой области техники.

Но все эти затраты оказались не напрасными. Издержав в общей сложности около 2 миллиардов долларов, ученые США к 1944 году создали уникальную технологию обогащения урана и производства плутония. Тем временем в Лос-Аламосской лаборатории работали над проектом самой бомбы. Принцип ее действия был в общих чертах ясен уже давно: делящееся вещество (плутоний или уран-235) следовало в момент взрыва перевести в критическое состояние (для осуществления цепной реакции масса заряда должна быть даже заметно больше критической) и облучить пучком нейтронов, что влекло за собой начало цепной реакции.

По расчетам, критическая масса заряда превосходила 50 килограмм, но ее смогли значительно уменьшить. Вообще на величину критической массы сильно влияют несколько факторов. Чем больше поверхностная площадь заряда - тем больше нейтронов бесполезно излучается в окружающее пространство. Наименьшей площадью поверхности обладает сфера. Следовательно, сферические заряды при прочих равных условиях имеют наименьшую критическую массу. Кроме того, величина критической массы зависит от чистоты и вида делящихся материалов. Она обратно пропорциональна квадрату плотности этого материала, что позволяет, например, при увеличении плотности вдвое, уменьшить критическую массу в четыре раза. Нужную степень подкритичности можно получить, к примеру, уплотнением делящегося материала за счет взрыва заряда обычного взрывчатого вещества, выполненного в виде сферической оболочки, окружающей ядерный заряд. Критическую массу, кроме того, можно уменьшить, окружив заряд экраном, хорошо отражающим нейтроны. В качестве такого экрана могут быть использованы свинец, бериллий, вольфрам, природный уран, железо и многие другие.

Одна из возможных конструкций атомной бомбы состоит из двух кусков урана, которые, соединяясь, образуют массу больше критической. Для того чтобы вызвать взрыв бомбы, надо как можно быстрее сблизить их. Второй метод основан на использовании сходящегося внутрь взрыва. В этом случае поток газов от обычного взрывчатого вещества направлялся на расположенный внутри делящийся материал и сжимал его до тех пор, пока он не достигал критической массы. Соединение заряда и интенсивное облучение его нейтронами, как уже говорилось, вызывает цепную реакцию, в результате которой в первую же секунду температура возрастает до 1 миллиона градусов. За это время успевало разделиться всего около 5% критической массы. Остальная часть заряда в бомбах ранней конструкции испарялась без
всякой пользы.

Первая в истории атомная бомба (ей было дано имя «Тринити») была собрана летом 1945 года. А 16 июня 1945 года на атомном полигоне в пустыне Аламогордо (штат Нью-Мексико) был произведен первый на Земле атомный взрыв. Бомбу поместили в центре полигона на вершине стальной 30-метровой башни. Вокруг нее на большом расстоянии размещалась регистрирующая аппаратура. В 9 км находился наблюдательный пункт, а в 16 км - командный. На всех свидетелей этого события атомный взрыв произвел потрясающее впечатление. По описанию очевидцев, было такое ощущение, будто множество солнц соединилось в одно и разом осветило полигон. Затем над равниной возник огромный огненный шар и к нему медленно и зловеще стало подниматься круглое облако пыли и света.

Оторвавшись от земли, этот огненный шар за несколько секунд взлетел на высоту более трех километров. С каждым мгновением он разрастался в размерах, вскоре его диаметр достиг 1, 5 км, и он медленно поднялся в стратосферу. Затем огненный шар уступил место столбу клубящегося дыма, который вытянулся на высоту 12 км, приняв форму гигантского гриба. Все это сопровождалось ужасным грохотом, от которого дрожала земля. Мощность взорвавшейся бомбы превзошла все ожидания.

Как только позволила радиационная обстановка, несколько танков «Шерман», выложенные изнутри свинцовыми плитами, ринулись в район взрыва. На одном из них находился Ферми, которому не терпелось увидеть результаты своего труда. Его глазам предстала мертвая выжженная земля, на которой в радиусе 1, 5 км было уничтожено все живое. Песок спекся в стекловидную зеленоватую корку, покрывавшую землю. В огромной воронке лежали изуродованные остатки стальной опорной башни. Сила взрыва была оценена в 20000 тонн тротила.

Следующим шагом должно было стать боевое применение бомбы против Японии, которая после капитуляции фашистской Германии одна продолжала войну с США и их союзниками. Ракет-носителей тогда еще не было, поэтому бомбардировку предстояло осуществить с самолета. Компоненты двух бомб были с большой осторожностью доставлены крейсером «Индианаполис» на остров Тиниан, где базировалась 509-я сводная группа ВВС США. По типу заряда и конструкции эти бомбы несколько отличались друг от друга.

Первая бомба - «Малыш» - представляла собой крупногабаритную авиационную бомбу с атомным зарядом из сильно обогащенного урана-235. Длина ее была около 3 м, диаметр - 62 см, вес - 4, 1 т.

Вторая бомба - «Толстяк» - с зарядом плутония-239 имела яйцеобразную форму с крупногабаритным стабилизатором. Длина ее
составляла 3, 2 м, диаметр 1, 5 м, вес - 4, 5 т.

6 августа бомбардировщик Б-29 «Энола Гэй» полковника Тиббетса сбросил «Малыша» на крупный японский город Хиросиму. Бомба опускалась на парашюте и взорвалась, как это и было предусмотрено, на высоте 600 м от земли.

Последствия взрыва были ужасны. Даже на самих пилотов вид уничтоженного ими в одно мгновение мирного города произвел гнетущее впечатление. Позже один из них признался, что они видели в эту секунду самое плохое, что только может увидеть человек.

Для тех же, кто находился на земле, происходящее напоминало подлинный ад. Прежде всего, над Хиросимой прошла тепловая волна. Ее действие длилось всего несколько мгновений, но было настолько мощным, что расплавило даже черепицу и кристаллы кварца в гранитных плитах, превратило в уголь телефонные столбы на расстоянии 4 км и, наконец, настолько испепелило человеческие тела, что от них остались только тени на асфальте мостовых или на стенах домов. Затем из-под огненного шара вырвался чудовищный порыв ветра и промчался над городом со скоростью 800 км/ч, сметая все на своем пути. Не выдержавшие его яростного натиска дома рушились как подкошенные. В гигантском круге диаметром 4 км не осталось ни одного целого здания. Через несколько минут после взрыва над городом прошел черный радиоактивный дождь - это превращенная в пар влага сконденсировалась в высоких слоях атмосферы и выпала на землю в виде крупных капель, смешанных с радиоактивной пылью.

После дождя на город обрушился новый порыв ветра, на этот раз дувший в направлении эпицентра. Он был слабее первого, но все же достаточно силен, чтобы вырывать с корнем деревья. Ветер раздул гигантский пожар, в котором горело все, что только могло гореть. Из 76 тысяч зданий полностью разрушилось и сгорело 55 тысяч. Свидетели этой ужасной катастрофы вспоминали о людях-факелах, с которых сгоревшая одежда спадала на землю вместе с лохмотьями кожи, и о толпах обезумевших людей, покрытых ужасными ожогами, которые с криком метались по улицам. В воздухе стоял удушающий смрад от горелого человеческого мяса. Всюду валялись люди, мертвые и умирающие. Было много таких, которые ослепли и оглохли и, тычась во все стороны, не могли ничего разобрать в царившем вокруг хаосе.

Несчастные, находившиеся от эпицентра на расстоянии до 800 м, за доли секунды сгорели в буквальном смысле слова - их внутренности испарились, а тела превратились в комки дымящихся углей. Находившиеся от эпицентра на расстоянии 1 км, были поражены лучевой болезнью в крайне тяжелой форме. Уже через несколько часов у них началась сильнейшая рвота, температура подскочила до 39-40 градусов, появились одышка и кровотечения. Затем на коже высыпали незаживающие язвы, состав крови резко изменился, волосы выпали. После ужасных страданий, обычно на второй или третий день, наступала смерть.

Всего от взрыва и лучевой болезни погибло около 240 тысяч человек. Около 160 тысяч получили лучевую болезнь в более легкой форме - их мучительная смерть оказалась отсроченной на несколько месяцев или лет. Когда известие о катастрофе распространилось по стране, вся Япония была парализована страхом. Он еще увеличился, после того как 9 августа самолет «Бокс Кар» майора Суини сбросил вторую бомбу на Нагасаки. Здесь также погибло и было ранено несколько сот тысяч жителей. Не в силах противостоять новому оружию, японское правительство капитулировало - атомная бомба положила конец Второй мировой войне.

Война закончилась. Она продолжалась всего шесть лет, но успела изменить мир и людей почти до неузнаваемости.

Человеческая цивилизация до 1939 года и человеческая цивилизация после 1945 года разительно не похожи друг на друга. Тому есть много причин, но одна из важнейших - появление ядерного оружия. Можно без преувеличений сказать, что тень Хиросимы лежит на всей второй половине XX века. Она стала глубоким нравственным ожогом для многих миллионов людей, как бывших современниками этой катастрофы, так и родившихся через десятилетия после нее. Современный человек уже не может думать о мире так, как думали о нем до 6 августа 1945 года - он слишком ясно понимает, что этот мир может за несколько мгновений превратиться в ничто.

Современный человек не может смотреть на войну, так как смотрели его деды и прадеды - он достоверно знает, что эта война будет последней, и в ней не окажется ни победителей, ни побежденных. Ядерное оружие наложило свой отпечаток на все сферы общественной жизни, и современная цивилизация не может жить по тем же законам, что шестьдесят или восемьдесят лет назад. Никто не понимал этого лучше самих создателей атомной бомбы.

«Люди нашей планеты , - писал Роберт Оппенгеймер, - должны объединиться. Ужас и разрушение, посеянные последней войной, диктуют нам эту мысль. Взрывы атомных бомб доказали ее со всей жестокостью. Другие люди в другое время уже говорили подобные слова - только о другом оружии и о других войнах. Они не добились успеха. Но тот, кто и сегодня скажет, что эти слова бесполезны, введен в заблуждение превратностями истории. Нас нельзя убедить в этом. Результаты нашего труда не оставляют человечеству другого выбора, кроме как создать объединенный мир. Мир, основанный на законности и гуманизме».

Древнеиндийские и древнегреческие ученые предполагали, что материя состоит из мельчайших неделимых частиц, в своих трактатах они писали об этом задолго до начала нашей эры. В V в. до н. э. греческий ученый Левкипп из Ми-лета и его ученик Демокрит сформулировали понятие атома (греч. atomos «неделимый»). На протяжении многих столетий эта теория оставалась скорее философской, и только в 1803 г. английским химиком Джоном Дальтоном была предложена научная теория атома, подтверждаемая экспериментами.

В конце XIX начале XX в. эту теорию развили в своих трудах Джозеф Томсон, а затем Эрнест Резерфорд, именуемый отцом ядерной физики. Было выяснено, что атом вопреки своему названию не является неделимой конечной частицей, как утверждалось раньше. В 1911 г. физики приняли «планетарную» систему Резерфорда Бора, согласно которой атом состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов. Позднее было установлено, что ядро также не является неделимым оно состоит из протонов, заряженных положительно, и не имеющих заряда нейтронов, которые состоят, в свою очередь, из элементарных частиц.

Как только ученым стало более или менее понятно строение атомного ядра, они попытались осуществить давнюю мечту алхимиков превращение одного вещества в другое. В 1934 г. французские ученые Фредерик и Ирен Жолио-Кюри при бомбардировке алюминия альфа-частицами (ядрами атома гелия) получили радиоактивные атомы фосфора, которые, в свою очередь, переходили в устойчивый изотоп кремния более тяжелого элемента, чем алюминий. Возникла идея провести подобный опыт с самым тяжелым природным элементом ураном, открытым в 1789 г. Мартином Клапротом. После того как в 1896 г. Анри Беккерель обнаружил радиоактивность солей урана, этот элемент всерьез заинтересовал ученых.

Э. Резерфорд.

Гриб ядерного взрыва.

В 1938 г. немецкие химики Отто Ган и Фриц Штрассман провели опыт, сходный с экспериментом Жолио-Кюри, правда, взяв вместо алюминия уран, они рассчитывали получить новый сверхтяжелый элемент. Однако результат оказался неожиданным: вместо сверхтяжелого получились легкие элементы из средней части периодической таблицы. Через некоторое время физик Лиза Мейтнер предположила, что бомбардировка урана нейтронами приводит к расщеплению (делению) его ядра, в результате чего получаются ядра легких элементов и остается некоторое число свободных нейтронов.

Дальнейшие исследования показали, что природный уран состоит из смеси трех изотопов, причем наименее стабильным из них является уран-235. Время от времени ядра его атомов самопроизвольно делятся на части, этот процесс сопровождается выделением двух-трех свободных нейтронов, которые мчатся со скоростью около 10 тыс. кмс. Ядра наиболее распространенного изото-па-238 в большинстве случаев просто захватывают эти нейтроны, реже происходит превращение урана в нептуний и далее в плутоний-239. При попадании нейтрона в ядро урана-2 3 5 моментально происходит его новое деление.

Было очевидно: если взять достаточно большой кусок чистого (обогащенного) урана-235, реакция деления ядер в нем пойдет лавинообразно эту реакцию назвали цепной. При делении каждого ядра выделяется огромное количество энергии. Было подсчитано, что при полном делении 1 кг урана-235 выделяется столько же тепла, сколько при сжигании 3 тыс. т угля. Этот колоссальный выброс энергии, высвобождающейся в считаные мгновения, должен был проявить себя как взрыв чудовищной силы, что, разумеется, сразу заинтересовало военные ведомства.

Супруги Жолио-Кюри. 1940-е гг.

Л. Мейтнер и О. Ган. 1925 г.

Перед началом Второй мировой войны в Германии и некоторых других странах велись строго засекреченные работы по созданию ядерного оружия. В США исследования, обозначенные как «Манхэттенский проект», стартовали в 1941 г., год спустя в Лос-Аламосе была основана крупнейшая в мире исследовательская лаборатория. Административно проект подчинялся генералу Гровсу научное руководство осуществлял профессор Калифорнийского университета Роберт Оппенгеймер. В работе проекта принимали участие крупнейшие авторитеты в области физики и химии, в том числе 13 лауреатов Нобелевской премии: Энрико Ферми, Джеймс Франк, Нильс Бор, Эрнест Лоуренс и др.

Главной задачей ставилось получение достаточного количества урана-235. Было установлено, что зарядом для бомбы может служить также плутоний-2 39, поэтому работы велись сразу по двум направлениям. Накопление урана-235 должно было осуществляться путем его отделения от основной массы природного урана, а плутоний мог быть получен только в результате управляемой ядерной реакции при облучении нейтронами урана-238. Обогащение природного урана производилось на заводах компании «Вестингауз», а для производства плутония необходимо было построить ядерный реактор.

Именно в реакторе происходил процесс облучения урановых стержней нейтронами, в результате чего часть урана-238 должна была превратиться в плутоний. Источниками нейтронов при этом были делящиеся атомы урана-235, но захват нейтронов ураном-238 не давал начаться цепной реакции. Решить проблему помогло открытие Энрико Ферми, который обнаружил, что нейтроны, замедленные до скорости 22 мс, вызывают цепную реакцию урана-235, но не захватываются ураном-238. В качестве замедлителя Ферми предложил 40-сантиметровый слой графита либо тяжелую воду, в состав которой входит изотоп водорода дейтерий.

Р. Оппенгеймер и генерал-лейтенант Л. Гровс. 1945 г.

Калутрон в Ок-Ридже.

Опытный реактор был сооружен в 1942 г. под трибунами Чикагского стадиона. 2 декабря произошел его успешный экспериментальный запуск. Через год в городе Ок-Ридж был построен новый обогатительный завод и запущен реактор для промышленного получения плутония, а также калутрон устройство для электромагнитного разделения изотопов урана. Общая стоимость работ по проекту составила около 2 млрд долларов. Тем временем в Лос-Аламосе шли работы непосредственно над устройством бомбы и способами детонации заряда.

16 июня 1945 г. неподалеку от города Аламогордо в штате Нью-Мексико в ходе испытаний под кодовым названием Trinity («Троица») было взорвано первое в мире ядерное устройство с плутониевым зарядом и имплозивной (использующей для детонации химическую взрывчатку) схемой подрыва. Мощность взрыва была эквивалентна взрыву 20 килотонн тротила.

Следующим шагом стало боевое применение ядерного оружия против Японии, которая после капитуляции Германии одна продолжала войну против США и их союзников. 6 августа бомбардировщик В-29 «Энола Гэй» под управлением полковника Тиббетса сбросил на Хиросиму бомбу Little Boy («малыш») с урановым зарядом и пушечной (использующей соединение двух блоков для создания критической массы) схемой подрыва. Бомба опускалась на парашюте и взорвалась на высоте 600 м от земли. 9 августа самолет «Бокс Кар» майора Суини сбросил на Нагасаки плутониевую бомбу Fat Man («толстяк»). Последствия взрывов были ужасны. Оба города были практически полностью разрушены, в Хиросиме погибло более 200 тыс. человек, в Нагасаки около 80 тыс. Позже один из пилотов признался, что они видели в эту секунду самое страшное, что только может увидеть человек. Не в силах противостоять новому оружию, японское правительство капитулировало.

Хиросима после атомной бомбардировки.

Взрыв атомной бомбы поставил точку во Второй мировой войне, но фактически начал новую войну «холодную», сопровождаемую безудержной гонкой ядерного вооружения. Советским ученым пришлось догонять американцев. В 1943 г. была создана секретная «лаборатория № 2», которую возглавил известный физик Игорь Васильевич Курчатов. Позднее лаборатория была преобразована в Институт атомной энергии. В декабре 1946 г. на опытном ядерном ураново-графитовом реакторе Ф1 была осуществлена первая цепная реакция. Два года спустя в Советском Союзе построили первый плутониевый завод с несколькими промышленными реакторами, а в августе 1949 г. на Семипалатинском полигоне провели испытательный взрыв первой советской атомной бомбы с плутониевым зарядом РДС-1 мощностью 22 килотонны.

В ноябре 1952 г. на атолле Эниветок в Тихом океане США взорвали первый термоядерный заряд, разрушительная сила которого возникала за счет энергии, высвобождающейся в ходе ядерного синтеза легких элементов в более тяжелые. Через девять месяцев на Семипалатинском полигоне советские ученые испытали РДС-6 термоядерную, или водородную, бомбу мощностью 400 килотонн, разработанную группой ученых под руководством Андрея Дмитриевича Сахарова и Юлия Борисовича Харитона. В октябре 1961 г. на полигоне архипелага Новая Земля была взорвана 50-мега-тонная «Царь-бомба» самая мощная водородная бомба из всех, когда-либо испытанных.

И. В. Курчатов.

На конец 2000-х годов США располагали примерно 5000, а Россия 2800 единицами ядерных боеприпасов на развернутых стратегических носителях, а также значительным количеством тактического ядерного оружия. Этого запаса достаточно, чтобы несколько раз уничтожить всю планету. Всего одна термоядерная бомба средней мощности (около 25 мегатонн) равна 1500 «хиросимам».

В конце 1970-х годов проводились исследования по созданию нейтронного оружия разновидности ядерной бомбы малой мощности. Нейтронная бомба отличается от обычной ядерной тем, что у нее искусственно увеличена та доля энергии взрыва, которая выделяется в виде нейтронного излучения. Это излучение поражает живую силу противника, воздействует на его вооружение и создает радиоактивное заражение местности, при этом воздействие ударной волны и светового излучения ограниченно. Однако ни одна армия мира так и не взяла нейтронные заряды на вооружение.

Хотя использование энергии атома поставило мир на грань уничтожения, у нее есть и мирная ипостась, правда, крайне опасная при выходе из-под контроля это ясно показали аварии на Чернобыльской и Фукусимской атомных электростанциях. Первая в мире АЭС мощностью всего 5 МВт была запущена 27 июня 1954 г. в поселке Обнинское Калужской области (ныне город Обнинск). На сегодняшний день в мире эксплуатируется более 400 АЭС, 10 из них в России. На них вырабатывается около 17 % всей мировой электроэнергии, и показатель этот, скорее всего, будет только увеличиваться. В настоящее время мир не может обойтись без использования ядерной энергии, однако хочется верить, что в будущем человечество найдет более безопасный источник энергопитания.

Пульт управления атомной станции в Обнинске.

Чернобыль после катастрофы.

В поисках идеального оружия, способного одним щелчком испарить армию противника, бились сотни тысяч известных и забытых оружейников древности. Периодически след этих поисков можно найти в сказках, более или менее правдоподобно описывающих чудо-меч или лук, бьющий без промаха.

К счастью, технический прогресс двигался долгое время настолько медленно, что реальное воплощение сокрушительного оружия оставалась в мечтах и устных рассказах, а позже на страницах книг. Научно-технический скачок XIX века обеспечил условия для создания главной фобии века ХХ-го. Ядерная бомба, созданная и испытанная в реальных условиях, произвела революцию и в военном деле, и в политике.

История создания оружия

Долгое время считалось, что самое мощное оружие можно создать только с использованием взрывчатых веществ. Открытия ученых, работавших с самыми мелкими частицами, дали научное обоснование того, что с помощью элементарных частиц можно вырабатывать огромную энергию. Первым в ряду исследователей можно назвать Беккереля, в 1896 году открывшего радиоактивность солей урана.

Сам уран был известен еще с 1786 года, однако в то время о его радиоактивности никто не подозревал. Работа ученых на рубеже XIX и ХХ веков выявила не только особые физические свойства, но и возможность получения энергии из радиоактивных веществ.

Вариант изготовления оружия на основе урана впервые был подробно описан, опубликован и запатентован французскими физиками, супругами Жолио-Кюри в 1939 году.

Несмотря на ценность для оружейного дела, сами ученые были решительно против создания настолько сокрушительного оружия.

Пройдя Вторую мировую войну в Сопротивлении, в 1950-х супруги (Фредерик и Ирэн) понимая разрушительную силу войны, выступают за всеобщее разоружение. Их поддерживают Нильс Бор, Альберт Эйнштейн и другие видные физики того времени.

Между тем, пока Жолио-Кюри были заняты проблемой фашистов в Париже, на другом конце планеты, в Америке, разрабатывался первый в мире ядерный заряд. Роберту Оппенгеймеру, возглавившему работы, были предоставлены широчайшие полномочия и огромные ресурсы. Конец 1941 года ознаменовался началом проекта «Манхеттен», приведшего в итоге к созданию первого боевого ядерного заряда.


В городке Лос-Аламос, штат Нью-Мексико, были воздвигнуты первые производственные площади для получения оружейного урана. В дальнейшем такие же ядерные центры появляются по всей стране, например в Чикаго, в Ок-Ридже, штат Теннеси, производились исследования и в Калифорнии. На создание бомбы были брошены лучшие силы профессуры американских университетов, а так же бежавшие из Германии ученые-физики.

В самом же «Третьем Рейхе» работа по созданию нового типа оружия была развернута характерным для фюрера способом.

Поскольку «Бесноватого» больше интересовали танки и самолеты, и чем больше тем лучше, в новой чудо-бомбе он не видел особой нужды.

Соответственно не поддерживаемые Гитлером проекты в лучшем случае двигались черепашьим шагом.

Когда же стало припекать, и оказалось что танки и самолеты проглотил Восточный фронт, новое чудо оружие получило поддержку. Но было поздно, в условиях бомбежек и постоянного страха советских танковых клиньев создать устройство с ядерной составляющей не представлялось возможным.

Советский Союз более внимательно относился к возможности создания нового типа разрушительного оружия. В довоенный период физиками собирались и сводились общие знания о ядерной энергетике и возможности создания ядерного оружия. Усиленно работала разведка в течение всего периода создания ядерной бомбы как в СССР, так и в США. Значительную роль в сдерживании темпов разработки сыграла война, так как огромные ресурсы уходили на фронт.

Правда, академик Курчатов Игорь Васильевич, со свойственным упорством, продвигал работу всех подведомственных подразделений и в этом направлении. Забегая немного вперед, именно ему будет поручено ускорить разработки оружия перед лицом угрозы американского удара по городам СССР. Именно ему, стоявшему во граве громадной машины из сотен и тысяч ученых и работников будет присвоено почетное звание отца советской ядерной бомбы.

Первые в мире испытания

Но вернемся к американской ядерной программе. К лету 1945 года американским ученым удалось создать первую в мире ядерную бомбу. Любой мальчишка, сделавший сам или купивший в магазине мощную петарду, испытывает необычайные муки, желая взорвать ее поскорее. В 1945 году сотни американских военных и ученых испытывали то же самое.

16 июня 1945 года в пустыне Аламогордо, штат Нью-Мексико, были произведены первые в истории испытания ядерного оружия и один из самых мощных, на тот момент, взрывов.

Очевидцев, наблюдавших за подрывом из бункера, поразила сила, с которой заряд разорвался на вершине 30-метровой стальной башни. Сначала все залил свет, сильнее в несколько раз сильнее солнечного. Затем в небо поднялся огненный шар, превратившийся в столб дыма, оформившегося в знаменитый гриб.

На место подрыва, как только улеглась пыль, ринулись исследователи и создатели бомбы. Наблюдали они за последствиями из обвешанных свинцом танков «Шерман». Увиденное поразило их, ни одно оружие не наносило бы такого ущерба. Песок местами оплавился до стекла.


Найдены были и крошечные останки башни, в воронке огромного диаметра изуродованные и раздробленные конструкции наглядно иллюстрировали разрушительную мощь.

Поражающие факторы

Этот подрыв дал первые сведения о силе нового оружия, о том, с помощью чего он может уничтожить противника. Это несколько факторов:

  • световое излучение, вспышка, способная ослепить даже защищенные органы зрения;
  • ударная волна, плотный поток воздуха, движущийся от центра, уничтожающий большинство строений;
  • электромагнитный импульс, выводящий из строя большую часть техники и не позволяющий пользоваться средствами связи первое время после взрыва;
  • проникающая радиация, наиболее опасный фактор для укрывшихся от прочих поражающих факторов, делится на альфа- бета- гамма- облучение;
  • радиоактивное заражение, способное отрицательно влиять на здоровье и жизнь в течение десятков, а то и сотен лет.

Дальнейшее применение ядерного оружия, в том числе в боевых действиях, показала все особенности влияния на живые организмы и на природу. 6 августа 1945 года стал последним днем для десятков тысяч жителей небольшого города Хиросима, известного тогда несколькими важными военными объектами.

Исход войны на Тихом океане был предрешен, однако в Пентагоне посчитали, что операция на японском архипелаге будет стоить более миллиона жизней морских пехотинцев армии США. Было принято решение убить сразу несколько зайцев, вывести Японию из войны, сэкономив на десантной операции, испытать в деле новое оружие и заявить о нем всему миру, и, прежде всего, СССР.

В час ночи самолет, на борту которого располагалась ядерная бомба «Малыш», вылетел на задание.

Бомба, сброшенная над городом, разорвалась на высоте примерно 600 метров в 8.15 утра. Все здания, располагавшиеся на расстоянии 800 метров от эпицентра, были разрушены. Уцелели стены всего нескольких строений, рассчитанных на 9-ти балльное землетрясение.

Из каждых десяти человек, находившихся в момент разрыва бомбы в радиусе 600 метров выжить смог только один. Световое излучение превращало людей в уголь, оставляя на камне следы тени, темный отпечаток места, на котором находился человек. Последовавшая взрывная волна была настолько сильна, что смогла выбить стекла на расстоянии 19 километров от места взрыва.


Одного подростка плотный поток воздуха выбил из дома через окно, приземлившись, парень увидел, как стены дома складываются как карты. За взрывной волной последовал огненный смерч, уничтоживший тех немногих жителей, уцелевших после взрыва и не успевших покинуть зону пожаров. Находившиеся на удалении от взрыва начали испытывать сильное недомогание, причина которой была первоначально неясна врачам.

Много позже, через несколько недель был озвучен термин «радиационное отравление», известный ныне как лучевая болезнь.

Жертвами всего одной бомбы, как непосредственно от взрыва, так и от последовавших болезней, стали более 280 тысяч человек.

На этом бомбардировки Японии ядерным оружием не закончились. По плану удару должны были быть подвергнуты всего от четырех до шести городов, но погодные условия позволили ударить еще только по Нагасаки. В этом городе жертвами бомбы «Толстяк» стали более 150 тысяч человек.


Обещания американского правительства наносить такие удары до капитуляции Японии привели к перемирию, а затем и к подписанию соглашения, окончившего Мировую войну. Но для ядерного оружия это было только начало.

Самая мощная бомба в мире

Послевоенное время ознаменовалось противостоянием блока СССР и союзников с США и НАТО. В 1940-х американцы всерьез рассматривали возможность нанесения удара по Советскому Союзу. Для сдерживания бывшего союзника пришлось ускорить работы по созданию бомбы, и уже в 1949 году, 29 августа с монополией Штатов в ядерном оружии было покончено. Во время гонки вооружений наибольшее внимание заслуживают два испытания ядерных зарядов.

Атолл Бикини, известный, прежде всего, легкомысленными купальниками, в 1954 году в буквальном смысле прогремел на весь мир в связи с испытаниями ядерного заряда особой мощности.

Американцы, решив опробовать новую конструкцию атомного оружия, не рассчитали заряд. В итоге взрыв получился в 2,5 раза мощнее, чем планировалось. Под ударом оказались жители близлежащих островков, а так же вездесущие японские рыбаки.


Но это была не самая мощная американская бомба. В 1960 году на вооружение принимается ядерная бомба В41, так и не прошедшая полноценных испытаний из-за своей мощности. Силу заряда рассчитали теоретически, опасаясь взрывать на полигоне такое опасное оружие.

Советский Союз, любивший во всем быть первым, испытал в 1961 году , прозванную по иному «Кузькина мать».

Отвечая на ядерный шантаж Америки, советские ученые создали самую мощную бомбу в мире. Испытанная на Новой Земле, она оставила свой след почти во всех уголках земного шара. По воспоминаниям, в самых удаленных уголках в момент взрыва ощущалось легкое землетрясение.


Взрывная волна, само собой, потеряв всю разрушительную силу, смогла обогнуть Землю. На сегодняшний момент это самая мощная ядерная бомба в мире, созданная и испытанная человечеством. Конечно, будь развязаны руки, ядерная бомба Ким Чен Ына была бы мощнее, но у него нет Новой Земли что бы испытать ее.

Устройство атомной бомбы

Рассмотрим очень примитивное, чисто для понимания, устройство атомной бомбы. Классов атомных бомб много, но рассмотрим три основные:

  • урановая, на основе урана 235 впервые взорванная над Хиросимой;
  • плутониевая, на основе плутония 239 впервые взорванная над Нагасаки;
  • термоядерная, иногда называемая водородной, на основе тяжелой воды с дейтерием и тритием, к счастью, против населения не применявшаяся.

Первые две бомбы основаны на эффекте деления тяжелых ядер на более мелкие путем неконтролируемой ядерной реакции с выделением огромного количества энергии. Третья основана на слиянии ядер водорода (вернее его изотопов дейтерия и трития) с образованием более тяжелого, по отношению к водороду, гелия. При одинаковом весе бомбы разрушительный потенциал водородной в 20 раз больше.


Если для урана и плутония достаточно собрать воедино массу большую чем критическая (при которой начинается цепная реакция), то для водородной этого недостаточно.

Для надежного соединения нескольких кусков урана в один используется эффект пушки при котором более мелкие куски урана выстреливаются в более крупные. Можно применять и порох, но для надежности применяется маломощная взрывчатка.

В плутониевой бомбе для создания необходимых условий цепной реакции взрывчатку располагают вокруг слитков с плутонием. За счет кумулятивного эффекта, а также расположенного в самом центре инициатора нейтронов (бериллий с несколькими миллиграммами полония) необходимые условия достигаются.

Она имеет основной заряд, который сам по себе никак взорваться не может, и взрыватель. Для создания условий слияния ядер дейтерия и трития, нужны невообразимые для нас давления и температуры хотя бы в одной точке. Далее произойдет цепная реакция.

Для создания таких параметров в состав бомбы входит обычный, но маломощный, ядерный заряд, который и является взрывателем. Его подрыв создает условия для начала термоядерной реакции.

Для оценки мощности атомной бомбы применяют так называемый «тротиловый эквивалент». Взрыв это выделение энергии, самое известное в мире взрывчатое вещество – тротил (ТНТ – тринитротолуол), к нему и приравнивают все новые виды взрывчатки. Бомба «Малыш» – 13 килотонн ТНТ. То есть эквивалентна 13000 .


Бомба «Толстяк» – 21 килотонна, «Царь-бомба» – 58 мегатонн ТНТ. Страшно подумать 58 миллионов тонн взрывчатки сосредоточенной в массе 26,5 тонн, именно столько весела эта бомба.

Опасность ядерной войны и катастрофы, связанные с атомом

Появившись в разгар самой страшной войны ХХ века, ядерное оружие стало самой большой опасностью для человечества. Сразу после Второй Мировой началась война Холодная, несколько раз едва не переросшая в полноценный ядерный конфликт. Об угрозе применения хотя бы одной стороной ядерных бомб и ракет стали говорить еще в 1950-х годах.

Все понимали и понимают, в этой войне победителей быть не может.

Для сдерживания предпринимались и предпринимаются усилия многих ученых и политиков. Чикагский университет, используя мнение приглашенных ядерщиков, в том числе Нобелевских лауреатов, ставит часы Судного Дня за несколько минут до полуночи. Полночь обозначает ядерный катаклизм, начало новой Мировой войны и уничтожение прежнего мира. В разные годы стрелки часов колебались от 17 до 2 минут до полуночи.


Известны и несколько крупных аварий, произошедших на атомных станциях. К оружию эти катастрофы отношение имеют опосредованное, АЭС все же отличаются от ядерных бомб, но они как нельзя лучше показывают результаты использования атома в военных целях. Самые крупные из них:

  • 1957 год, Кыштымская авария, из-за сбоя в системе хранения произошел взрыв недалеко от Кыштыма;
  • 1957 год, Британия, на северо-западе Англии не досмотрели за безопасностью;
  • 1979 год, США, из-за несвоевременно обнаруженной утечки произошел взрыв и выброс из АЭС;
  • 1986 год, трагедия в Чернобыле, взрыв 4-го энергоблока;
  • 2011 год, авария на станции Фукусима, Япония.

Каждая из этих трагедий легла тяжелой печатью на судьбы сотен тысяч людей и превратила целые области в нежилые зоны с особым контролем.


Были инциденты, едва не стоившие начала атомной катастрофы. Советские атомные подводные лодки неоднократно имели на борту аварии, связанные с реакторами. Американцы уронили бомбардировщик «Суперкрепость» с двумя ядерными бомбами Мark 39 на борту, мощностью 3,8 мегатонн. Но сработавшая “система безопасности” не позволила зарядам сдетонировать и катастрофы удалось избежать.

Ядерное оружие в прошлом и настоящем

Сегодня любому ясно, что ядерная война уничтожит современное человечество. Между тем желание обладать ядерным оружием и войти в ядерный клуб, а точнее ввалиться в него, вышибив дверь, по-прежнему будоражит умы некоторых лидеров государств.

Самовольно создали ядерное оружие Индия и Пакистан, скрывают наличие бомбы израильтяне.

Для одних обладания ядерной бомбой – способ доказать важность на международной арене. Для других – гарантия невмешательства крылатой демократии или иных факторов извне. Но главное, чтобы эти запасы не пошли в дело, для чего они действительно были созданы.

Видео

Истории развития человечества всегда сопутствовали войны, как способ решения конфликтов насилием. Цивилизация перенесла более пятнадцати тысяч малых и больших вооруженных конфликтов, потери человеческих жизней исчисляются миллионами. Только в девяностых годах прошлого века случилось более ста военных столкновений, с участием девяноста стран мира.

Одновременно, научные открытия, технический прогресс позволили создавать оружие уничтожения все большей мощности и изощренности применения. В двадцатом веке пиком массового разрушительного воздействия и инструментом политики стало ядерное оружие.

Устройство атомной бомбы

Современные ядерные бомбы как средства поражения противника создаются на основе передовых технических решений, суть которых широкой огласке не придается. Но основные элементы присущие этому виду оружия, можно рассмотреть на примере устройства ядерной бомбы с кодовым названием «Толстяк», сброшенной в 1945 году на один из городов Японии.

Мощность взрыва равнялась 22.0 кт в тротиловом эквиваленте.

Она имела следующие конструктивные особенности:

  • длинна изделия составляла 3250.0 мм, при диаметре объемной части — 1520.0 мм. Общий вес более 4.5 тонн;
  • корпус представлен эллиптической формой. Во избежание преждевременного разрушения из — за попадания зенитных боеприпасов и нежелательных воздействий иного рода, для его изготовления использовалась 9.5 мм бронированная сталь;
  • корпус разделен на четыре внутренние части: нос, две половины эллипсоида (основной — отсек для ядерной начинки), хвост.
  • носовой отсек укомплектован аккумуляторными батареями;
  • основной отсек, как носовой, для предупреждения попадания вредных сред, влаги, создания комфортных условий для работы бородатчика вакуумируются;
  • в эллипсоиде размещалось плутониевое ядро, охваченное урановым тампером (оболочкой). Он играл роль инерционного ограничителя течением ядерной реакции, обеспечивая максимальную активности оружейного плутония, путем отражения нейтронов к стороне активной зоны заряда.

Внутри ядра размещали первичный источник нейтронов, носящий название инициатор или «ежик». Представлен бериллием шарообразной формы диаметром 20.0 мм с наружным покрытием на основе полония — 210.

Следует отметить, что экспертным сообществом такая конструкция ядерного боеприпаса определена, малоэффективной, ненадежной при использовании. Нейтронное инициирование неуправляемого типа в дальнейшем не использовалось.

Принцип действия

Процесс деления ядер урана 235 (233) и плутония 239 (это то, из чего состоит ядерная бомба) с огромным выделением энергии при ограничении объема — называют ядерным взрывом. Атомная структура радиоактивных металлов имеет неустойчивую форму — они постоянно делятся на другие элементы.

Процесс сопровождается отрывом нейронов, часть из которых, попадает на соседние атомы, инициируют дальнейшую реакцию, сопровождающуюся выделением энергии.

Принцип заключается следующим: сокращение время распада приводит к большей интенсивности процесса, а сосредоточение нейронов на бомбардировках ядер приводит к цепной реакции. При совмещении двух элементов до критической массы создастся сверхкритическая, приводящая к взрыву.


В бытовых условиях спровоцировать активную реакцию невозможно — нужны высокие скорости сближения элементов — не менее 2.5 км/с. Достижение этой скорости в бомбе возможно при применении комбинирующих друг друга типов взрывчатки (быстрой и медленной), балансирующих плотность сверхкритической массы, производящий атомный взрыв.

Ядерные взрывы относят к результатам деятельности человека на планете или ее орбите. Природные процессы такого рода возможны лишь на некоторых звездах космического пространства.

Атомные бомбы по праву считают самым мощным и разрушительным оружием массового поражения. Тактическое применение решает задачи по уничтожению стратегических, военных объектов наземного, а также глубинного базирования, поражения значительного скопления техники, живой силы противника.

Глобально применить можно только преследуя цель полного истребления населения и инфраструктуры на значительных территориях.

Для достижения определенных целей, выполнения задач тактического и стратегического характера подрывы атомных боеприпасов могут проводить:

  • на критических и малых высотах (выше и ниже 30.0 км);
  • в непосредственном прикосновении с земной корой (водой);
  • подземно (или подводный взрыв).

Ядерный взрыв характеризуется мгновенным выделением огромной энергии.

Приводящей к поражению объектов и человека следующим образом:

  • Ударная волна. При взрыве выше или на земной коре (воде) называют воздушной волной, под землей (водой) — сейсмовзрывной волной. Воздушная волна образуется после критичного сжатия воздушных масс и распространяется окружностью до затухания со скоростью, превышающей звук. Приводит как прямому поражению живой силы, так и косвенному (взаимодействием с осколками разрушенных объектов). Действие избыточного давления делает технику нефункциональной путем перемещения и ударов о поверхность земли;
  • Световое излучение. Источник — световая часть, образованная испарением изделия с массами воздуха, при наземном применении — паров грунта. Воздействие происходит в ультрафиолетовом и инфракрасном спектрах. Его поглощение предметами и людьми провоцирует обугливание, плавление и горение. Степень поражения зависима от удаления эпицентра;
  • Проникающая радиация — это движущееся от места разрыва нейтроны и гамма — лучи. Воздействие на биологические ткани приводит к ионизации молекул клеток, приводящих к лучевой болезни организма. Поражение имущества сопряжено с реакциями деления молекул в поражающих элементах боеприпасов.
  • Радиоактивное заражение. При наземном взрыве происходит подъем паров грунта, пыли и прочего. Возникает облако, перемещающееся в направлении движения воздушных масс. Источники поражения представлены продуктами деления активной части ядерного боеприпаса, изотопами, не разрушенными частями заряда. При движении радиоактивного облака происходит сплошное радиационное заражение местности;
  • Электромагнитный импульс. Взрыв сопровождает появление электромагнитных полей (от 1.0 до 1000 м) в виде импульса. Они приводят к выходу из строя электрических приборов, средств управления и связи.

Совокупность факторов ядерного взрыва наносит разно — уровневое поражение живой силе, технике и инфраструктуре противника, а фатальность последствий связана лишь с удалением от его эпицентра.


История создания ядерного оружия

Создание оружия с использованием ядерной реакции сопровождалось рядом научных открытий, теоретических и практических изысканий, в их числе:

  • 1905 год — создана теория относительности, утверждающая, что небольшое количество вещества соотносится значительному выделению энергии по формуле E = mc2, где «с» представляет световую скорость (автор А. Эйнштейн);
  • 1938 год — немецкими учеными проведен эксперимент по разделению атома на части путем атаки урана нейтронами, закончившийся успешно (О.Ханн и Ф. Страссманна), а физик из Великобритании дал объяснения факту выделения энергии (Р.Фриш);
  • 1939 год — ученым из Франции, что при проведении цепи реакций молекул урана выделится энергия способная произвести взрыв огромной силы (Жолио — Кюри).

Последнее и стало отправной точкой для изобретения атомного оружия. Параллельной разработкой занимались Германия, Великобритания, США, Япония. Основная проблема заключалась в добычи урана потребными объемами для проведения экспериментов в этой области.

Быстрее задачу решили в США, закупив сырье у Бельгии в 1940 году.

В рамках проекта, получившего название Манхэттен, с тридцать девятого по сорок пятый год построен завод по урановой очистке, создан центр исследования ядерных процессов, привлечены для работы в нем лучшие специалисты — физики со всей части Западной Европы.

Великобритания, ведшая собственные разработки, вынуждена была, после немецкой бомбардировки, в добровольном порядке передать наработки по своему проекту военным США.

Считается, что американцы, первые, кто изобрел атомную бомбу. Испытания первого ядерного заряда проводились в штате Нью — Мехико в июле сорок пятого года. Вспышка от взрыва затмила небо, а песчаный ландшафт превратился в стекло. Через небольшой промежуток времени созданы ядерные заряды, именуемые «Малыш» и «Толстяк».


Ядерное оружие в СССР — даты и события

Становлению СССР, как ядерной державы, предшествовала длительная работа отдельных ученых и государственных институтов. Ключевые периоды и значимые даты событий представлены следующим:

  • 1920 год считают началом работ советских ученых по делению атома;
  • С тридцатых годов направление ядерной физики становиться приоритетным;
  • Октябрь 1940 года — инициативная группа ученых — физиков выступила с предложением об использовании атомных разработок в военных целях;
  • Летом 1941 года в связи с войной институты атомной энергетики переведены в тыл;
  • Осенью 1941 года советская разведка проинформировала руководство страны о начале ядерных программ в Британии и Америке;
  • Сентябрь 1942 года — исследования атома начали делаться полным объемом, работы по урану продолжились;
  • Февраль 1943 года — создана специальная исследовательская лаборатория под руководством И. Курчатова, а общее руководство возложено на В. Молотова;

Руководил проектом В. Молотов.

  • Август 1945 года — в связи проведением ядерного бомбометания в Японии, высокой важностью разработок для СССР, создан Специальный Комитет под руководство Л. Берии;
  • Апрель 1946 года — создано КБ-11, ставшее разрабатывать образцы советского ядерного оружия в двух вариантах (с использованием плутония и урана);
  • Средина 1948 года — работы по урану прекращены из — за малой эффективности при больших затратах;
  • Август 1949 года — когда в СССР изобрели атомную бомбу, проведены испытания первой советской ядерной бомбы.

Сокращению сроков разработки изделия способствовала качественная работа разведывательных органов, сумевших получить информацию по американским ядерным разработкам. Среди тех, кто первый создал атомную бомбу в СССР, был коллектив ученых под руководством академика А. Сахарова. Они разработали более перспективные технические решения, чем используемые американцами.


Атомная бомба «РДС-1»

В 2015 — 2017 годах Россия сделала прорыв совершенствования ядерных боеприпасов и средств их доставки, тем самым заявив о государстве способном отразить любую агрессию.

Первые испытания атомной бомбы

После испытания экспериментального ядерной бомбы в штате Нью — Мексико летом сорок пятого года, последовали бомбежки японских городов Хиросимы и Нагасаки, шестого и девятого августа соответственно.

в этом году закончена разработка атомной бомбы

В 1949 году, при условиях повышенной секретности, советскими конструкторами КБ — 11 и ученым была закончена разработка атомной бомбы, носившей название РДС-1 (реактивный двигатель «С»). 29 августа на полигоне Семипалатинска прошло испытание первого советского ядерного устройства. Атомная бомба России — РДС-1 представляла собой изделие «каплевидной» формы, весом 4.6 тонн, диаметром объемной части 1.5 м, длинной 3.7 метра.

Активная часть включала плутониевый блок, позволивший достичь мощности взрыва 20.0 килотонн соразмерно тротилу. Площадка для испытаний занимала радиус двадцатью километрами. Особенности условий испытательного подрыва не обнародованы до настоящего времени.

Третьего сентября того же года американской авиационной разведкой установлено наличие в воздушных массах Камчатки следов изотопов, свидетельствующих об испытания ядерного заряда. Двадцать третьего числа, первое лицо США публично объявило, что СССР удалось испытывать атомную бомбу.

Советский Союз опроверг заявления американцев сообщением ТАСС, в котором говорилось о масштабном строительстве на территории СССР и больших объемах проведения строительных, в том числе взрывных, работ, послуживших причиной привлечения внимания иностранцев. Официальное заявление о том, что СССР располагает атомным оружием, сделано лишь в 1950 году. Поэтому до сих пор в мире не стихают споры, кто первый изобрел атомную бомбу.