Правила макияжа

Электронное строение атома углерода. гибридизация и гибридные орбитали

  Электронное строение атома углерода. гибридизация и гибридные орбитали

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.


Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.


Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.


А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s -электроны, а два другие – не спаренные р -электроны.


Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.


При возбуждении атома (при сообщени ему энергии) один из спаренных S -электронов занимает р -орбиталь.


Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.


Так, простейшее органическое соединение углеводород метан имеет состав СН 4 . Строение его может быть выражено структурной или электронной формулами:



Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.


Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.



Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.


Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s - и трёх p -орбиталей в результате sp 3 -гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp 3 -орбитали, вытянутые в направлении к вершинам тетраэдра.

Особенность свойств углерода.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.


В левой части периодической системы расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.


Элементы этих двух групп являются металлами . Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.


В правой части периодической системы, наоборот, находятся неметаллы (окислители) . В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.


Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.


Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.


Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.


По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны .

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.


Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.


Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).


Так углеводороды этан (С 2 Н 6 ) и пропан (С 3 Н 8 ) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:



Известны соединения, содержащие в цепях сотни и более атомов углерода.


Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:



Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.



Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:



Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):



Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

С – 1s 2 2s 2 2p 2 или 1s 2 2s 2 2p x 1 2p y 1 2p z 0

В графическом виде:

Атом углерода в возбужденном состоянии имеет следующую электронную формулу:

*С – 1s 2 2s 1 2p 3 или 1s 2 2s 1 2p x 1 2p y 1 2p z 1

В виде ячеек:

Форма s- и p – орбиталей


Атомная орбиталь - область пространства, где с наибольшей вероятностью можно обнаружить электрон, с соответствующими квантовыми числами.

Она представляет собой трехмерную электронную «контурную карту», в которой волновая функция определяет относительную вероятность нахождения электрона в данной конкретной точке орбитали.

Относительные размеры атомных орбиталей увеличиваются по мере возрастания их энергий (главное квантовое число - n), а их форма и ориентация в пространстве определяется – квантовыми числами l и m. Электроны на орбиталях характеризуются спиновым квантовым числом. На каждой орбитали могут находиться не более 2 электронов с противоположными спинами.

При образовании связей с другими атомами атом углерода преобразует свою электронную оболочку так, чтобы образовались наиболее прочные связи, а, следовательно, выделилось как можно больше энергии, и система приобрела наибольшую устойчивость.

Для изменения электронной оболочки атома требуется энергия, которая затем компенсируется за счет образования более прочных связей.

Преобразование электронной оболочки (гибридизация) может быть, в основном, 3 типов, в зависимости от числа атомов, с которыми атом углерода образует связи.

Виды гибридизации:

sp 3 – Гибридизация (валентное состояние) – атом образует связи с 4 соседними атомами (тетраэдрическая гибридизация):

Электронная формула sp 3 – гибридного атома углерода:

*С –1s 2 2(sp 3) 4 в виде ячеек

Валентный угол между гибридными орбиталями ~109°.



Стереохимическая формула атома углерода:

sp 2 – Гибридизация (валентное состояние) – атом образует связи с 3 соседними атомами (тригональная гибридизация):

Электронная формула sp 2 – гибридного атома углерода:

*С –1s 2 2(sp 2) 3 2p 1 в виде ячеек

Валентный угол между гибридными орбиталями ~120°.

Стереохимическая формула sp 2 – гибридного атома углерода:

sp – Гибридизация (валентное состояние ) – атом образует связи с 2 соседними атомами (линейная гибридизация):

Электронная формула sp – гибридного атома углерода:

*С –1s 2 2(sp) 2 2p 2 в виде ячеек

Валентный угол между гибридными орбиталями ~180°.

Стереохимическая формула:

Во всех видах гибридизации участвует s-орбиталь, т.к. она имеет минимум энергии.

Перестройка электронного облака позволяет образовывать максимально прочные связи и минимальное взаимодействие атомов в образующейся молекуле. При этом гибридные орбитали могут быть не идентичные, а валентные углы – разные, например СН 2 Cl 2 и СCl 4

2. Классификация и номенклатура органических соединений. Виды изомерии в органических молекулах .

Классификация изомеров

Структурная (различный порядок соединения атомов)

Стереоизомерия (различное расположение атомов в пространстве)

Цепи 1. Положения кратной связи

2. Положения функциональной группы

3. Конфигурационные

4. Конформационные

2.Структурная изомерия .

Структурные изомеры – это изомеры, имеющие одинаковый качественный и количественный состав, но отличающиеся химическим строением.

Структурная изомерия обуславливает многообразие органических соединений, в частности алканов. С увеличением числа атомов углерода в молекулах алканов быстро возрастает количество структурных изомеров. Так, для гексана (С 6 Н 14) оно равно 5, для нонана (С 9 Н 20) – 35.

Атомы углерода различаются по месту положения в цепи. Атом углерода, стоящий в начале цепи, связан с одним атомом углерода и называется первичным. Атом углерода, связанный с двумя атомами углерода – вторичным , с тремя – третичным , с четырьмя – четвертичным . В молекулах алканов с неразветвленной цепью содержатся только первичные и вторичные атомы углерода, а в молекулах алканов с разветвлённой цепью и третичные и четвертичные.

Виды структурной изомерии.

  • Изомерия углеродной цепи:
  • Изомерия положения кратной связи

Изомерия положения функциональной группы

Метамеры – соединения, относящиеся к одному классу соединений, но имеющие различные радикалы:

Н 3 С – О – С 3 Н 7 – метилпропиловый эфир,

Н 5 С 2 – О – С 2 Н 5 – диэтиловый эфир

  • Межклассовая изомерия. При одном и том же качественном и количественном составе молекул, строение веществ различное.

Н 2 С = СН – СН = СН 2 бутадиен -1,3 НС = С - СН 2 – СН 3 – бутин-1

Структурная изомерия обусловливает и многообразие углеводородных радикалов. Изомерия радикалов начинается с пропана, для которого возможны два радикала. Если атом водорода отнять от первичного атома углерода, то получится радикал пропил (н-пропил). Если атом водорода отнять от вторичного атома углерода, то получится радикал изопропил

Пространственная изомерия (стереоизомерия)

Это существование изомеров, имеющих одинаковый состав и порядок соединения атомов, но отличающихся характером расположения атомов или групп атомов в пространстве относительно друг друга.

Этот вид изомерии описали Л. Пастер (1848), Я. Вант-Гофф, Ле Бель (1874).

В реальных условиях сама молекула и её отдельные части (атомы, группы атомов) находятся в состоянии колебательно – вращательного движения и это движение сильно изменяет взаимное расположение атомов в молекуле. В это время происходит растяжение химических связей и изменение валентных углов и таким образом возникают различные конфигурации и конформации молекул.

Поэтому пространственные изомеры делятся на два вида: конформационные и конфигурационные.

Конфигурации – это порядок расположения атомов в пространстве без учета различий, которые возникают в результате вращения вокруг одинарных связей. Эти изомеры существуют в виде различных конформаций.

Конформации – очень неустойчивые динамические формы одной и той же молекулы, которые возникают в резцльтате вращения атомов или групп атомов вокруг одинарных связей, в результате чего атомы занимают различное пространственное положение. Каждая конформация молекулы характеризуется определённой конфигурацией.

Ϭ-связь допускает вращение вокруг неё, поэтому одна молекула может иметь множество конформаций. Из множества конформаций во внимание принимают только шесть, т.к. за минимальный угол поворота считают угол равный 60 о, который называется торсионным углом.

Различают: заслоненную и заторможенную конформации.

Заслонённая конформация возникает в том случае, если одинаковые заместители расположены на минимальном расстоянии друг от друга и между ними возникают силы взаимного отталкивания, и молекула должна обладать большим запасом энергии, чтобы сохранить эту конформацию. Эта конформация энергетически невыгодна.

Заторможенная конформация – возникает в том случае, если одинаковые заместители максимально удалены друг от друга и молекула обладает минимальным запасом энергии. Эта конформация энергетически выгодна.

П ервое соединение, для которого известно существование конформационных изомеров, является этан. Его строение в пространстве изображается перспективной формулой или формулой Ньюмена:

С 2 Н 6

заслонённая заторможенная

конформация конформация

Проекционные формулы Ньюмена.

Ближайший к нам атом углерода обозначают точкой в центре круга, круг изображает удаленный атом углерода. Три связи каждого атома изображают в виде линий, расходящихся из центра круга – для ближнего атома углерода и маленькие – для удаленного атома углерода.

В длинных углеродных цепях вращение возможно вокруг несколькихС – С связей. Поэтому вся цепь может принимать разнообразные геометрические формы. По рентгенографическим данным длинные цепи насыщенных углеводородов имеют зигзагообразную и клешневидную конформации. Например: пальмитиновая (С 15 Н 31 СООН) и стеариновая (С 17 Н 35 СООН) кислоты в зигзагообразных конформациях входят в состав липидов клеточных мембран, а молекулы моносахаридов в растворе принимают клешневидную конформацию.

Конформации циклических соединений

Для циклических соединений характерно угловое напряжение, связанное с наличием замкнутого цикла.

Если считать циклы плоскими, то для многих из них валентные углы будут значительно отклоняться от нормального. Напряжение, вызванное отклонением валентных углов между атомами углерода в цикле от нормального значения, называют угловым или байеровским.

Например, в циклогексане атомы углерода находятся в sp 3 - гибридном состоянии и соответственно валентный угол должен быть равным 109 о 28 / . Если бы атомы углерода лежали бы в одной плоскости, то в плоском цикле внутренние валентные углы были бы равны 120 о, а все атомы водороданаходились бы в заслоненной конформации. Но циклогексан не может быть плоским из-за наличия сильных углового и торсионного напряжений. У него возникают менее напряженные неплоские конформации за счет частичного поворота вокруг ϭ-связей, среди которых более устойчивыми являются конформации кресла и ванны.

Наиболее энергетически выгодной является конформация кресла, т.к в ней отсутствуют заслоненные положения атомов водорода и углерода. Расположение атомов Н у всех атомов С такое же, как в заторможенной конформации этана. В этой конформации все атомы водорода открыты и доступны для реакций.

Конформация ванны менее энергетически выгодная, так как у 2-х пар атомов С (С-2 и С-3), (С-5 и С-6), лежащих в основании, атомы Н находятся в заслонённой конформации, поэтому эта конформация обладает большим запасом энергии и неустойчива.

С 6 Н 12 циклогексан

Форма «кресла» более энергетически выгодна, чем «ванна».

  1. Оптическая изомерия.

В конце XIX века было обнаружено, что многие органические соединения способны вращать плоскость поляризованного луча влево и вправо. Т. е. световой луч, падающий на молекулу вступает во взаимодействие с её электронными оболочками, при этом происходит поляризация электронов, что приводит к изменению направления колебаний в электрическом поле. Если вещество вращает плоскость колебаний по часовой стрелке, его называют правовращающим (+), если против часовой стрелки – левовращающим (-). Эти вещества были названы оптическими изомерами. Оптически активные изомеры содержат ассиметричный атом углерода (хиральный) – это атом, содержащий четыре разных заместителя. Вторым важным условием является отсутствие всех видов симметрии (оси, плоскости). К ним относятся многие окси- и аминокислоты

Исследования показали, что такие соединения отличаются порядком расположения заместителей у атомов углерода в sp 3 - гибридизации.

П ростейшим соединением является молочная кислота (2-гидроксипропановая)

Стереоизомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное отображение или как левая и правая рука называются энантиомерами (оптические изомеры, зеркальные изомеры, антиподы, а явление называется энантиомерией. Все химические и физические свойства энантиомеров одинаковы, кроме двух: вращение плоскости поляризованного света (в приборе поляриметре) и биологическая активность.

Абсолютную конфигурацию молекул определяют сложными физико-химическими методами.

Относительную конфигурацию оптически активных соединений определяют путем сравнения со стандартом глицеринового альдегида. Оптически активные вещества, имеющие конфигурацию правовращающего или левовращающего глицеринового альдегида (М. Розанов, 1906), называются веществами D- и L-ряда. Равная смесь право- и левовращающих изомеров одного соединения называется рацематом и оптически неактивна.

Исследования показали, что знак вращения света нельзя связывать с принадлежностью вещ-ва к D- и L-рядам, его определяют только экспериментально в приборах – поляриметрах. Например, L-молочная к-та имеет угол вращения +3,8 о, D- молочная к-та - -3,8 о.

Энантиомеры изображают с помощью формул Фишера.

  1. Углеродная цепь изображается вертикальной линией.
  2. Вверху ставится старшая функциональная группа, внизу младшая.
  3. Ассиметричный атом углерода изображается горизонтальной линией, на концах которой стоят заместители.
  4. Количество изомеров определяются по формуле 2 n , n – число асимметрических атомов углерода.

L-ряд D-ряд

Среди энантиомеров могут быть симметричные молекулы, не обладающие оптической активностью, и называются мезоизомерами.

Например: Винная к-та

D – (+) – ряд L – (–) – ряд Мезовинная к-та

Рацемат – виноградная к-та

Оптические изомеры, не являющиеся зеркальными изомерами, отличающиеся конфигурацией нескольких, но не всех асимметрических атомов С, обладающие различными физическими и химическими св-вами, наз-ся s-ди -а -стереоизомерами.

p-Диастереомеры (геометрические изомеры) – это стереомеры, имеющие в молекуле p-связь. Они встречаются у алкенов, непредельных высших карбоновых к-т, непредельных дикарбоновых к-т. Например:

Цис-бутен-2 Транс-бутен-2

Биологическая активность органических вещ-в связана с их строением. Например:

Цис-бутендиовая к-та, Транс-бутендиовая к-та,

малеиновая к-та – фумаровая к-та – не ядовита,

очень ядовита содержится в организме

Все природные непредельные высшие карбоновые к-ты являются цис-изомерами.

Понятие о сопряженных системах. Понятие об ароматичности органических молекул. Правило Хюккеля. Ароматичность бензоидных (бензол и нафталин) и гетероциклических (фуран, тиофен, пиррол, пиразол, имидазол, пиридин, пиримидин, пурин) соединений.

Теория химического строения А.М. Бутлерова. Электронное строение атома углерода и виды гибридизации.

В 1861 году А.М. Бутлеровым была предложена теория химического строения органических соединений, которая состоит из следующих основных положений.

1. В молекулах веществ существует строгая последовательность химического связывания атомов, которая называется химическим строением.

2. Химические свойства вещества определяются природой элементарных составных частей, их количеством и химическим строением.

3. Если у веществ с одинаковым составом и молекулярной массой различное строение, то возникает явление изомерии.

4. Так как в конкретных реакциях изменяются только некоторые части молекулы, то исследование строения продукта помогает определить строение исходной молекулы.

5. Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е. от того, с какими атомами других элементов они соединены.

Атом углерода в возбужденном состоянии содержит четыре неспаренных электрона на внешнем энергетическом уровне и способен образовать четыре ковалентных связи.

В образовании связей участвуют гибридные орбитали.

Первое валентное состояние – sp3-гибридизация. В результате гибридизации с участием одной s и трех p орбиталей атома углерода образуются четыре эквивалентные sp3-гибридные орбитали, направленные к вершинам тетраэдра под углами 109,5о:

В состоянии sp3-гибридизации атом углерода образует четыре s -связи с четырьмя заместителями и имеет тетраэдричекую конфигурацию с валентными углами, равными или близкими 109,5о. (например, метан)

Второе валентное состояние – sp2-гибридизация. В результате гибридизации с участием одной s- и двух p-орбиталей атома углерода образуются три эквивалентные sp2-гибридные орбитали, лежащие в одной плоскости под углами 120о, а не участвующая в гибридизации p-орбиталь расположена перпендикулярно плоскости гибридных орбиталей.

В состоянии sp2-гибридизации атом углерода образует три s -связи за счет гибридных орбиталей и одну p -связь за счет не участвующей в гибридизации p-орбитали и имеет три заместителя. (например, этилен)

Третье валентное состояние углерода – sp-гибридизация. В результате гибридизации с участием одной s- и одной p–орбитали образуются две эквивалентные sp-гибридные орбитали, лежащие под углом 1800, а не участвующие в гибридизации p-орбитали расположены перпендикулярно плоскости гибридных орбиталей и друг другу. В состоянии sp-гибридизации атом углерода образует две s -связи за счет гибридных орбиталей и две p -связи за счет не участвующих в гибридизации p-орбиталей и имеет два заместителя. (например, ацетилен)

Понятие о конфигурации молекул. Оптическая, или зеркальная изомерия. Элементы симметрии молекул (ось, плоскость, центр). Ассиметрический атом углерода как центр хиральности. Оптическая активность и удельное вращение веществ.

Молекулы с одним центром хиральности (энантиомерия). Глицериновый альдегид как кон-фигурационный стандарт. Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D-, L- и R-, S-системы. Понятие о рацематах.

Энантиомеры - стереоизомеры, относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отображение.

В виде энантиомеров могут существовать только хиральные молекулы.

Хиральность - это свойство объекта быть несовместимым со своим зеркальным отражением. Хиральными (от греч. cheir - рука), или асимметричными, объектами являются левая и правая рука, а также перчатки, ботинки и др. Эти парные предметы представляют собой объект и его зеркальное отражение (рис. 7.1, а). Такие предметы не могут быть полностью совмещены друг с другом.

В то же время существует множество окружающих нас предметов, которые совместимы со своим зеркальным отражением, т. е. они являются ахиральными (симметричными), например тарелки, ложки, стаканы и т. д. Ахиральные предметы обладают по крайней мере одной плоскостью симметрии, которая делит объект на две зеркальноидентичные части (см. рис. 7.1, б).

Подобные взаимоотношения наблюдаются также в мире молекул, т. е. молекулы делятся на хиральные и ахиральные. У ахиральных молекул есть плоскости симметрии, у хиральных их нет.

В хиральных молекулах имеется один или несколько центров хиральности. В органических соединениях в качестве центра хиральности чаще всего выступает асимметрический атом углерода.

Асимметрическим является атом углерода, связанный с четырьмя различными атомами или группами.

При изображении стереохимической формулы молекулы символ «С» асимметрического атома углерода обычно опускается.

Для изображения конфигурационных изомеров на плоскости можно пользоваться стереохимическими формулами. Однако удобнее применять более простые в написании проекционные формулы Фишера (проще - проекции Фишера).

Тетраэдрическую модель одного из энантиомеров располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа - сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра должны быть направлены к наблюдателю. После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.

Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному,. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи - за плоскость рисунка.

В проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);

Проекционную формулу разрешается поворачивать в плоскости рисунка на 180? (что эквивалентно двум перестановкам), но не на 90?.

За конфигурационный стандарт был принят глицериновый альдегид. Его левовращающему энантиомеру была произвольно приписана формула (I). Такая конфигурация атома углерода была обозначена буквой l (от лат. laevus - левый). Правовращающему энантиомеру соответственно была приписана формула (II), а конфигурация обозначена буквой d (от лат. dexter - правый).

Заметим, что в стандартной проекционной формуле l-глицеринового альдегида группа ОН находится слева, а у d-глицеринового альдегида - справа.

Отнесение к d- или l-ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией d- или l-глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у l-глицеринового альдегида, поэтому энантиомер (I) относят к l-ряду. Из тех же соображений энантиомер (II) относят к d-ряду. Так из срав- нения проекций Фишера определяют относительную конфигурацию.

Следует отметить, что l-глицериновый альдегид имеет левое вращение, а l-молочная кислота - правое (и это не единичный случай). Более того, одно и то же вещество может быть как лево-, так и правовращающим в зависимости от условий определения (разные растворители, температура).

Знак вращения плоскости поляризованного света не связан с принадлежностью к d- или l-стереохимическому ряду.

Практическое определение относительной конфигурации оптически активных соединений проводят с помощью химических реакций: либо исследуемое вещество превращают в глицериновый альдегид (или другое вещество с известной относительной конфигурацией), либо, наоборот, изd- или l-глицеринового альдегида получают исследуемое вещество. Разумеется, что в ходе всех этих реакций не должна изменяться конфигурация асимметрического атома углерода.

Произвольное приписание лево- и правовращающему глицериновому альдегиду условных конфигураций было вынужденным шагом. В то время абсолютная конфигурация не была известна ни для одного хирального соединения. Установление абсолютной конфигурации стало возможным только благодаря развитию физико-химических методов, особенно рентгеноструктурного анализа, с помощью которого в 1951 г. впервые была определена абсолютная конфигура,ция хиральной молекулы - это была соль (+)-винной кислоты. После этого стало ясно, что абсолютная конфигурация d- и l-глицериновых альдегидов действительно такая, какая им была первоначально приписана.

d,l-Система в настоящее время применяется для α-аминокислот, гидроксикислот и (с некоторыми дополнениями) для углеводов

R,S-Система обозначения конфигурации. d,L-Система имеет весьма ограниченное применение, так как часто невозможно соотнести конфигурацию какого-либо соединения с глицериновым альдегидом. Универсальной системой обозначения конфигурации центров хиральности является R,S-система (от лат. rectus - прямой, sinister - левый). В ее основе лежит правило последовательности, основанное на старшинстве заместителей, связанных с центром хиральности.

Старшинство заместителей определяется атомным номером элемента, непосредственно связанного с центром хиральности, - чем он больше, тем старше заместитель.

Так, группа ОН старше NH 2 , которая, в свою очередь, старше любой алкильной группы и даже СООН, поскольку в последней с асимметрическим центром связан атом углерода. Если атомные номера оказываются одинаковыми, старшей считается группа, у которой следующий за углеродом атом имеет больший порядковый номер, причем, если этот атом (обычно кислород) связан двойной связью, он учитывается дважды. В результате следующие группы так располагаются в порядке падения старшинства: -СООН > -СН=О > -СН 2 ОН.

Для определения конфигурации тетраэдрическую модель соединения располагают в пространстве так, чтобы самый младший замес- титель (в большинстве случаев это атом водорода) был наиболее удален от наблюдателя. Если старшинство трех остальных заместителей убывает по часовой стрелке, то центру хиральности приписывают R-конфигурацию (рис. 7.4, а), если против часовой стрелки - S -конфигурацию (см. рис. 7.4, б), как это видно водителю, находящемуся за рулем (см. рис. 7.4, в).

Рис. 7.4. Определение конфигурации энантиомеров молочной кислоты по R,S- системе (объяснение в тексте)

Для обозначения конфигурации по RS-системе можно применить проекции Фишера. Для этого проекцию преобразуют так, чтобы

Вопрос 9

Кислотность и основность органических соединений .

Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и теория Льюиса.

По теории Льюиса кислотные и основ­ные свойства соединений определяются их способностью принимать или отдавать пару электронов с образованием связи. В соответствии с принципом ЖМКО кислоты и основания Льюиса делятся на жесткие и мягкие.

Кислотами Льюиса могут быть атомы, молекулы или катионы, обладающие вакантной орбиталью и способные принимать пару электронов с образованием ковалентной связи.

Кислоты Льюиса – акцепторы пары электронов; основания Льюиса – доноры пары электронов. Основания Льюиса (атом, молекула или анион) должны обладать по крайней мере одной парой валентных электронов, которую они способны предоставить партнеру для образования ковалентной связи. Все основания Льюиса представляют собой нуклеофильные реагенты.

По теории Бренстеда (протолитической теории) кислотность и основность соединений связывается с переносом протона Н + . Кислота и основание образуют сопряженную кислотно-основную пару, в которой чем сильнее кислота, тем слабее сопряжен­ное ей основание, и напротив, чем сильнее основание, тем слабее сопряженная ему кислота.

Кислоты Бренстеда (протонные кислоты) – нейтральные молекулы или ионы, способные отдавать протон (доноры протонов).

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).

Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии кислоты. В качестве растворителя при изучении кислотно-основных равновесий обычно используется вода.

В зависимости от природы элемента, с которым связан про­тон, различают ОН- кислоты (карбоновые кислоты, фенолы, спирты), SH-кислоты (тиолы), NН-кислоты (амины, амиды, имиды), СН-кислоты (углеводороды и их произ­водные). Элемент и связанный с ним атом водорода называют кислотным центром. Во всех случаях присутствует сдвиг электронной плотности от атома водорода к более электроотрицательному атому, протону более или менее легко отщепиться. Чем выше электроотрицательность элемента, с которым связан протон, тем больше кислотность соединения (так, карбоновые кислоты являются более сильными кислотами, чем тиолы или амины).

Наличие в молекуле электроноакцепторных групп, обладающих отрицательными электронными эффектами, увеличивает положительный заряд на протоне, что приводит к усилению кислотных свойств.

Для образования ковалентной связи с протоном основания Бренстеда должны предоставлять либо неподелениую пару электронов, либо электроны p-связи. В соот­ветствии с этим основания Бренстеда делятся на п -основания и p-основания.

n -основания могут быть нейтральными или отрицательно за­ряженными. Как правило, анионы обладают более сильно выра­женным основным характером, чем нейтральные вещества. То есть амид-ион NН 2 – или гидроксид-ион НО – по основности превосходят аммиак NН 3 и воду Н 2 О.

В p-основаниях, к которым относятся алкены, алкадиены, арены, центром основности, т.е. местом присоединения протона, являются электроны p-связи. Это очень слабые основания, так как протонируемые электронные пары несвободны.

Наличие электронодонорных заместителей увеличивает основность органических соединений.

1. Зависимость кислотности от гетероатома.

Под природой гетероатома понимают его электроотрицательность (Э.О.) и поляризуемость. Чем больше (Э.О.) тем легче осуществляется гетеролитический разрыв в молекуле. В периодах слева направо с ростом заряда ядра растет (Э.О), т.е. способность элементов удерживать отрицательный заряд. В результате смещения электронной плотности связь между атомами поляризуется. Чем больше электронов и чем больше радиус атома, тем дальше электроны внешнего энергетического уровня расположены от ядра, тем выше поляризуемость и выше кислотность.

Пример: СН- NH- OH- SH-

увеличение Э.О. и кислотности

С, N,О – элементы одного периода. Э.О. по периоду растет, кислотность увеличивается. В этом случае поляризуемость влиять на кислотность не будет.

Поляризуемость атомов в периоде изменяется незначительно, поэтому главным фактором определяющим кислотность является Э.О.

Теперь рассмотрим ОН- SH-

увел-е кислотности

О, S – находятся в одной группе, радиус в группе сверху вниз увеличивается, следовательно, растет и поляризуемость атома, что ведет к увеличению кислотности. У S радиус атома больше, чем у О, поэтому тиолы проявляют более сильные кислотные свойства по сравнению со спиртами.

2. Влияние углеводородного радикала и присутствующих в нем заместителей

Электроноакцепторные (Э.А.) заместители способствуют делокализации электронной плотности, что ведёт к стабильности аниона и соответственно увеличению кислотности.

Электронодонорные (Э.Д.) заместители наоборот способствуют концентрации электронной плотности в кислотном центре, что ведет к понижению кислотности и увеличению основности.

Влияние растворителя.

Взаимодействие молекул или ионов растворенного вещества с растворителем называется процессом сольватации. Стабильность аниона существенно зависит от его сольватации в растворе: чем больше ион сольватирован, тем он устойчивее, а сольватация тем больше, чем меньше размер иона и чем меньше делокализация в нем отрицательного заряда.

Кислотные свойства

1. С активными металлами:

HO-CH 2 -CH 2 -OH + 2Na → H 2 + NaO-CH 2 -CH 2 -ONa (гликолят натрия)

2. С гидроксидом меди(II) – качественная реакция!

Качественной реакцией на двухатомные и многоатомные спирты (диольный фрагмент) является реакция с Си(ОН)2 в щелочной среде, в результате которой образуется комплексное соединение гликолят меди в растворе, дающем синее окрашивание.

Упрощённая схема

Основные свойства

1. С галогенводородными кислотами

HO-CH 2 -CH 2 -OH + 2HCl H+ ↔ Cl-CH 2 -CH 2 -Cl + 2H 2 O

С азотной кислотой

Тринитроглицерин - основа динамита

Этиленгликольтоксичен – сильный Яд! Угнетает ЦНС и поражает почки.

Глицерин (пропантриол-1,2,3) – не ядовит. Без запаха. Хорошо смешивается с водой. Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей. Применяется как компонент мазей для смягчения кожи.

Многоатомный циклический спирт инозит относится к витаминоподобным соединениям (витамины группы В) и является структурным компонентом сложных липидов – фосфатидилинозитов.

Этилендиамин применяется для полученияэтилендиаминтетрауксусной кислоты взаимодействием схлоруксусной кислотой . Его соли сжирными кислотами используются как смягчающие агенты при производстве текстиля . Также этилендиамин применяется в производстве красителей ,эмульгаторов , стабилизаторовлатексов , пластификаторов ифунгицидов . Этилендиамин токсичен ; предельно допустимая концентрация его паров в воздухе составляет 0,001 мг/л.

Из полиаминов аиболее известны тетраметилендиамин, или путресцин H2N(CH2)4NH2, и пентаметилендиамин, или кадаверин H2N(CH2)5NH2. Их долгое время считали трупными ядами, т.е. веществами, образующимися при декарбоксилировании диаминокислот и обусловливающими ядовитость гниющих белков.

12. Фенолы.Общая характеристика.

Электронное строение карбонильной группы. Реакции нуклеофильного присоединения АN по карбонильной группе. Реакции присоединения воды, синильной кислоты, спиртов, би-сульфита натрия. Механизм альдольной конденсации и реакции Канницаро.


Строение карбонильной группы C=O.

· Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Связь С=О сильно полярна. Ее дипольный момент значительно выше, чем у связи С–О в спиртах. Электроны кратной связи С=О, в особенности более подвижные p-электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

· Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Нуклеофильное присоединение

Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения A N .

Общее описание механизма нуклеофильного присоединения A N

Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного

положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения A N к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С 2 Н 5 О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.

Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH2X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).

Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.


Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.

Образование бисульфитных соединений Присоединением молекулы кислого сернистокислого натрия(бисульфита) получаются так называемые бисульфитные соединения, причем водород присоединяется ккислороду карбонильной группы, а остаток SO 2 ONa - к углеродному атому:

В бисульфитных соединениях атом серы непосредственно связан с углеродом.

КАННИЦЦАРО РЕАКЦИЯ , окислит.-восстановит. диспропорционирование альдегидов под действием щелочис образованием первичных спиртов и карбоновых к-т, напр.:


Предполагаемый механизм Канниццаро реакции в гомог. среде включает стадию гидридного переноса


Для ароматич. альдегидов не исключена возможность участия в Канниццаро реакции анион-радикалов, образующихся в результате одноэлектронного переноса. Р-ция, подобная Канниццаро реакции, осуществляется при внутримол. диспропорционировании a-кетоальдегидов в присут. щелочей(перегруппировка Канниццаро):

Дезаминирование,

Внутримолекулярное дезаминирование

R-CH 2 – CH(NH 2) - COOH→ R- CH=CH-COOH + NH 3

α,β – ненасыщенная кислота

Гидролитическое дезаминирование

R-CH(NH 2) – COOH +H 2 O → R – CH(OH) – COOH + NH 3

α - оксикислота

Окислительное дезаминирование

R-CH(NH 2) – COOH +1/2 O 2 → R –C(O) – COOH + NH 3

α-кетокислота

Образование комплексов с металлами. α-Аминокислоты образуют с катионами тяжелых металлов внутрикомплексные соли. Со свежеприготовленным гидроксидом меди(II) все α-аминокислоты в мягких условиях дают хорошо кристаллизующиеся внутрикомплексные (хелатные) соли меди(II) синего цвета:

В таких солях ион меди координационными связями соединен с аминогруппами.

Образование пептидной связи.

Межмолекулярное взаимодействие -аминокислот приводит к образованию пептидов. При взаимодействии двух -аминокислот образуется дипептид.

Межмолекулярное взаимодействие трех -аминокислот приводит к образованию трипептида и т.д.

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH - пептидной связью.

22. Декарбоксилирование α-аминокислот – образование биогенных аминов и биорегуляторов (гиста-мин, триптамин).
Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию - отщеплению ос-карбоксильной группы. В тканях млекопитающих декарбоксилированию может подвергаться целый ряд аминокислот или их производных: Три, Тир, Вал, Гис, Глу, Цис, Apr и др. Продуктами реакции являются СО 2 и амины, которые оказывают выраженное биологическое действие на организм (биогенные амины):

Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами. Простетическая группа декарбоксилаз в клетках животных - пиридоксальфосфат.

Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются биологически активными веществами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Гистамин образуется при декарбоксилировании аминокислоты гистидина. Он синтезируется в тучных клетках, накапливается в секреторных гранулах, выделяется при раздражении клеток.

Гистамин оказывает разнообразные биологические эффекты: вызывает расширение сосудов, снижает артериальное давление, увеличивает тканевую проницаемость, вызывает местный отёк, стимулирует желудочную секрецию, обладает бронхоспатическим эффектом. В высокой концентрации он является медиатором воспалительных и аллергических реакций.

Серотонин образуется при декарбоксилировании гидрокситриптофана. Он синтезируется в хромаффиннных клетках, в некоторых ядрах подкорковых структур, тромбоцитах.

Эффекты серотонина: вызывает спазм сосудов, повышение артериального давления, стимулирует перистальтику кишечника, участвует в терморегуляции, в механизмах сна, является источником для синтеза гормона мелатонина, влияет на психические реакции человека. Так, при шизофрении наблюдается нарушение обмена серотонина.

Катехоламины (дофамин, адреналин, норадреналин) синтезируются из аминокислоты тирозина.

Дофамин – возбуждающий медиатор, при его дефиците развивается болезнь Паркинсона (адинамия, ригидность, тремор). Адреналин вызывает спазм сосудов, повышают артериальное давление, стимулирует работу сердца, является гормоном.

Норадреналин в основном выполняет нейромедиаторные функции.

Полиамины (спермин, спермидин) синтезируются из орнитина и метионина, входят в состав хроматина, участвует в регуляции процессов трансляции, транскрипции, репликации.

Так как биогенные амины очень активны, они быстро инактивируются в тканях. Распад биогенных аминов осуществляется несколькими способами: окисление, метилирование, дезаминирование. Основным способом инактивации биогенных аминов является окислительное дезаминирование под действием ферментов аминооксидаз (моноаминооксидаз, полиаминооксидаз).

Аминокислоты могут ковалентно связы­ваться друг с другом с помощьюпептидных свя­зей. Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH-R связь, называемая пептидной связью. При этом происходит отщепление мо­лекулы воды.

O- и N-глюкозиды. Гидролиз глюкозидов. Фосфаты моносахаридов. Ацилирование аминосаха-ров. Окисление моносахаридов. Получение озазонов глюкозы. Восстановительные свойства аль-доз. Ксилит, сорбит. Аскорбиновая кислота.

Гликозиды – производные циклич.форм углеводов, в которых полуацетальная гидроксильная группа заменена группой ОR.

Неуглевод.комонент – агликон. Связь между аномерным центром и группой –ОR – гликозидная.

Подразделяют на пиранозиды фуранозиды.

Гликозиды глюкозы называют глюкозидами, рибозы – рибозидами и т.д.

ГЛИКОЗИДЫ

с а х а р агликон

(чаще моносахарид) (спирт, ароматич.соед., стероиды и т.д.)

Гликозид синигрин; гидролиз:

Гликозид ванилина; гидролиз:

Фосфаты моносахарид.

Большое значение имеют эфиры фосфорной кислоты – фосфаты. Они содержатся во всех растительных и животных организмах и представляют собой метаболически активные формы моносахаридов. Наиболее важную роль играют фосфаты D-глюкозы и D-фруктозы.

Окисление глюкозы внейтральной, слабо-кислой среде:

Окисление с помощью сильного окислителя:

Окисление глюкозы в щелочной среде.

Р-ция Толленса:

Представляет собой γ-лактон кислоты.

Содержится во фруктах, особенно в цитрусовых, ягодах(шиповникэ, черная смородина), овощах, молоке.

Проявляет сильные кислотные свойства

за счет одной из гидроксильных групп ендиольного фрагмента.

При образовании солей γ-лактонное кольцо не размыкается.

Обладает сильными восстановительными свойствами. Образующаяся при ее окислении дегидроаскорбиновая кислота легко восстанавливается в аскорбиновую. Этот процесс обеспечивает ряд окислительно-восстановительных реакции в организме.

Органическая химия – химия атома углерода. Число органических соединений в десятки раз больше, чем неорганических, что может быть объяснено только особенностями атома углерода :

а) он находится в середине шкалы электроотрицательности и второго периода, поэтому ему невыгодно отдавать свои и принимать чужие электроны и приобретать положительный или отрицательный заряд;

б) особенное строение электронной оболочки – нет электронных пар и свободных орбиталей (есть еще только один атом с подобным строением – водород, вероятно, поэтому углерод с водородом образует столь много соединений - углеводородов).

Электронное строение атома углерода

С – 1s 2 2s 2 2p 2 или 1s 2 2s 2 2p x 1 2p y 1 2p z 0

В графическом виде:

Атом углерода в возбужденном состоянии имеет следующую электронную формулу:

*С – 1s 2 2s 1 2p 3 или 1s 2 2s 1 2p x 1 2p y 1 2p z 1

В виде ячеек:

Форма s- и p – орбиталей


Атомная орбиталь - область пространства, где с наибольшей вероятностью можно обнаружить электрон, с соответствующими квантовыми числами.

Она представляет собой трехмерную электронную «контурную карту», в которой волновая функция определяет относительную вероятность нахождения электрона в данной конкретной точке орбитали.

Относительные размеры атомных орбиталей увеличиваются по мере возрастания их энергий (главное квантовое число - n), а их форма и ориентация в пространстве определяется – квантовыми числами l и m. Электроны на орбиталях характеризуются спиновым квантовым числом. На каждой орбитали могут находиться не более 2 электронов с противоположными спинами.

При образовании связей с другими атомами атом углерода преобразует свою электронную оболочку так, чтобы образовались наиболее прочные связи, а, следовательно, выделилось как можно больше энергии, и система приобрела наибольшую устойчивость.

Для изменения электронной оболочки атома требуется энергия, которая затем компенсируется за счет образования более прочных связей.

Преобразование электронной оболочки (гибридизация) может быть, в основном, 3 типов, в зависимости от числа атомов, с которыми атом углерода образует связи.

Виды гибридизации:

sp 3 – атом образует связи с 4 соседними атомами (тетраэдрическая гибридизация):

Электронная формула sp 3 – гибридного атома углерода:

*С –1s 2 2(sp 3) 4 в виде ячеек

Валентный угол между гибридными орбиталями ~109°.

Стереохимическая формула атома углерода:

sp 2 – Гибридизация (валентное состояние) – атом образует связи с 3 соседними атомами (тригональная гибридизация):

Электронная формула sp 2 – гибридного атома углерода:

*С –1s 2 2(sp 2) 3 2p 1 в виде ячеек

Валентный угол между гибридными орбиталями ~120°.

Стереохимическая формула sp 2 – гибридного атома углерода:

sp – Гибридизация (валентное состояние ) – атом образует связи с 2 соседними атомами (линейная гибридизация):

Электронная формула sp – гибридного атома углерода:

*С –1s 2 2(sp) 2 2p 2 в виде ячеек

Валентный угол между гибридными орбиталями ~180°.

Стереохимическая формула:

Во всех видах гибридизации участвует s-орбиталь, т.к. она имеет минимум энергии.

Перестройка электронного облака позволяет образовывать максимально прочные связи и минимальное взаимодействие атомов в образующейся молекуле. При этом гибридные орбитали могут быть не идентичные, а валентные углы – разные, например СН 2 Cl 2 и СCl 4

2. Ковалентные связи в соединениях углерода

Ковалентные связи, свойства, способы и причины образования – школьная программа.

Напомню, лишь что:

1. Образование связи между атомами можно рассматривать как результат перекрывания их атомных орбиталей, при этом, чем оно эффективнее (больше интеграл перекрывания), тем прочнее связь.

Согласно расчетным данным, относительные эффективности перекрывания атомных орбиталей S отн возрастают следующим образом:

Следовательно, использование гибридных орбиталей, например, sp 3 -орбиталей углерода в образовании связей с четырьмя атомами водорода, приводит к возникновению более прочных связей.

2. Ковалентные связи в соединениях углерода образуются двумя способами:

А) Если две атомные орбитали перекрываются вдоль их глав­ных осей, то образующуюся связь называют - σ-связью .

Геометрия. Так, при обра­зовании связей с атомами водорода в метане четыре гибридные sр 3 ~орбитали атома углерода перекрываются с s-орбиталями четырех атомов водорода, образуя четыре идентичные прочные σ-связи, располагающиеся под углом 109°28" друг к другу (стандартный тетраэдрический угол). Сходная строго симмет­ричная тетраэдрическая структура возникает также, например, при образовании ССl 4 ; если же атомы, образующие связи с уг­леродом, неодинаковы, например в случае СН 2 С1 2 , пространст­венная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической.

Длина σ-связи между атомами углерода зависит от гибридизации атомов и уменьшается при переходе от sр 3 – гибридизации к sр. Это объясняется тем, что s – орбиталь находится ближе к ядру, чем р-орбиталь, поэтому, чем больше её доля в гибридной орбитале, тем она короче, а следовательно, короче и образующаяся связь

Б) Если две атомные p -орбитали, расположенные параллельно друг другу, осуществляют боковое перекрывание над и под плоскостью, где расположены атомы, то образующуюся связь называют - π (пи) -связью

Боковое перекрывание атомных орбиталей менее эффективно, чем перекры­вание вдоль главной оси, поэтому π -связи менее прочны, чем σ -связи. Это проявляется, в частности, в том, что энергия двойной углерод-углеродной связи превышает энергию одинарной связи менее чем в два раза. Так, энергия связи С-С в этане равна 347 кДж/моль, тогда как энергия связи С = С в этене составляет только 598 кДж/моль, а не ~ 700 кДж/моль.

Степень бокового перекрывания двух атомных 2р-орбиталей , а следовательно, и прочность π -связи максимальна, если два атома углерода и четыре связанные с ними атомы расположены строго в одной плоскости , т. е. если они копланарны , поскольку только в этом случае атомные 2р-орбитали точно параллельны одна другой и поэтому способны к максимальному перекрыванию. Любое отклонение от копланарного состояния вследствие пово­рота вокруг σ -связи, соединяющей два атома углерода, приве­дет к уменьшению степени перекрывания и соответственно к снижению прочности π -связи, которая, таким образом, способ­ствует сохранению плоскостности молекулы.

Вращение вокруг двойной углерод-углеродной связи невозможно.

Распределение π -электронов над и под плоскостью молекулы означает су­ществование области отрицательного заряда , готовой к взаимо­действию с любыми электронодефицитными реагентами.

Атомы кислорода, азота и др. также имеют разные валентные состояния (гибридизации), при этом их электронные пары могут находиться как на гибридных, так и p-орбиталях.