Уход за руками

Понятне об устройстве торпед. Роберт уайтхед предлагает свои торпеды Принцип работы торпеды

Понятне об устройстве торпед. Роберт уайтхед предлагает свои торпеды Принцип работы торпеды

Несмотря на стремительное развитие ракетного противолодочного оружия, наблюдаемое в течение последних десяти лет, торпеды различных типов до сих пор остаются главным средством поражения подлодок и одним из самых действенных средств уничтожения надводных судов противника . Россия, как и прежде, занимает лидирующие позиции в области разработки торпедного оружия для вооружения подводных лодок и надводных кораблей.

Универсальная глубоководная самонаводящаяся торпеда (УГСТ) является одним из уникальнейших образцов российского торпедного оружия. Несколько лет назад производителем были получены документы, дающие право экспортировать это изделие. Торпеду УГСТ выставляли на двух Международных военно-морских салонах (МВМС) проходивших в Санкт-Петербурге.

Причем во время первого показа, в 2003 году, когда торпеду хотели впервые открыто представить широкому кругу специалистов, из-за каких-то проблем со спецслужбами УГСТ на второй день спрятали от зрителей, завернув ее в ковролин и перемотав скотчем. Данное обстоятельство вызвало настоящую сенсацию не только у зарубежных, но и у российских журналистов, пишущих на военно-техническую тему.

Однако и без этого «инцидента», похожего на кадры из плохого шпионского фильма, многие эксперты в области военно-морской техники вполне заслуженно уделяют этому образцу ВВТ повышенное внимание. Но теперь можно, не оглядываясь на компетентные органы, рассказать о УГСТ, которая является превосходным образцом торпедного оружия. Данная торпеда была разработана специалистами санкт-петербургского ФГУП «Научно-исследовательский институт морской теплотехники» и подмосковного ГНПП «Регион».

УГСТ - универсальная глубоководная самонаводящаяся , предназначенная для поражения и надводных кораблей противника. УГСТ может выпускаться из 533-миллиметровых торпедных аппаратов. Кроме того, торпеда является универсальной по носителю, то есть может стоять на вооружении как подлодок, так и надводных кораблей .
Существует две модификации торпеды УГСТ:
– для российских торпедных аппаратов, длина торпеды 7,2 метра;
– экспортный вариант для натовских торпедных аппаратов, длина торпеды 6,1 метра.

Совместимость аппаратуры носителя и бортовых систем торпеды производится программной настройкой системного блока во время привязки к определенному типу корабля . Причем для размещения универсальной глубоководной самонаводящейся торпеды на некоторых модернизируемых судах существует возможность поставки переходного пульта предстартовой подготовки, позволяющего вводить данные в торпеду перед выстрелом.

Российские специалисты в этом изделии смогли реализовать современную концепцию тяжелой торпеды. Был повышен интеллектуальный уровень бортовой аппаратуры торпеды, и достигнуты высокие тактико-технические характеристики, такие как глубина, дальность и скорость хода.

Основные характеристики УГСТ :
Калибр — 534,4 мм
Длина — 7200 мм
Масса – 2200 кг
Масса БЧ – 300 кг
Скорость — 50 узлов
Дальность стрельбы — 40 км
Глубина — до 500 м
Глубина стрельбы с подлодки — до 400 м
Радиус реагирования ССН:
— по подлодке до 2,5 км
— по надводному кораблю до 1,2 км

С тепловой пропульсивной системой ТПС-53 скорость торпеды может достигать 65 узлов, а максимальная дальность хода - 60 км. Кроме режима самонаведения по кильватерному следу, торпеда имеет режим управления по проводам (на 5…25 км, в зависимости от типа цели), и режим следования курсу (с заданным количеством колен и отворотов).

Важной отличительной особенностью данной торпеды является ее модульная конструкция. Это позволяет создавать целое семейство торпед, которые обладают многоуровневым потенциалом модифицируемости: от перепрограммирования аппаратуры в базовой модели до замены резервуарного отделения или двигателя. Такой подход дает возможность быстро комплектовать УГСТ под особенности конкретных условий боевого применения торпеды.

УГСТ конструктивно включает в себя :
— аппаратурный модуль;
— зарядное боевое отделение;
— резервуарное отделение, имеющее отсек аппаратуры телеуправления;
— двигательная установка (силовое отделение);
— хвостовое отделение, в котором находятся рулевые устройства;
— катушку телеуправления и АЭРВД.

Энергосиловую установку УГСТ построили на основе аксиально-поршневого двигателя работающего на отлично зарекомендовавшем себя жидком однокомпонентном топливе . Вращающаяся камера сгорания является особенностью двигателя. Топливо подается плунжерным высоконапорным насосом.

Стартовый пороховой заряд, размещенный в камере сгорания, позволяет за короткое время наращивать мощность двигательной установки. Это особенно важно на начальном этапе хода торпеды. Движителем торпеды является уникальный малошумный водомет , соединенный напрямую с двигателем.

Основой архитектуры аппаратурного модуля УГСТ является инициирование единого перепрограммируемого вычислительного ядра на ее борту, которые объединяют информационные части бортовых систем торпеды в единое информационное пространство интегрированных систем управления.

Российские конструкторы реализовали в УГСТ еще одно «ноу-хау» – двухплоскостные рули, которые выдвигаются за калибр торпеды после того как она выходит из торпедного аппарата . По расчетам инженеров, данная конструкция рулей позволяет существенно снизить шумность торпеды. Работа рулей также весьма эффективна и позволяет торпеде уверенно проходить трудный начальный участок пути после ее выстреливания из торпедного аппарата надводного корабля или подводной лодки.

Что касается боевой части торпеды (боевого зарядного отделения), то оно представляет собой отсек с вкладной капсулой, в которой размещается взрывчатое вещество. Разработано несколько модификаций боевого зарядного отделения, различающихся по массе и составу взрывчатого вещества, а также системе инициирования во время подрыва.

Головной отсек , в котором размещается аппаратурный модуль, расположен перед боевым отделением. Аппаратурный модуль включает системы самонаведения, управления движением, телеуправления и другие. Система самонаведения универсальной глубоководной самонаводящейся торпеды является активно-пассивной . Она включает плоскую приемно-излучающую антенную решетку, в которой регулируется сектор обзора и специально разработанные приборы активных многоканальных гидролокаторов.

Система самонаведения эффективно осуществляет поиск, обнаружение и захват вражеской цели с любой глубины. Также предусмотрена возможность атаки по кильватерному следу цели. Головная часть универсальной глубоководной самонаводящейся торпеды по своей форме отличается от остальных торпед. Она имеет затупленную форму с плоской стенкой, за которой установлена антенна ССН.

Все агрегаты и системы УГСТ прошли все лабораторные и стендовые отработки на специализированных испытательных комплексах НИИ морской теплотехники и НПП «Регион», которое недавно вошло в состав Корпорации «Тактическое ракетное вооружение». Во время натурных испытаний торпеды мобильный гидроакустический полигон (МГП) был использован в полной мере.

Мобильный гидроакустический полигон предназначен для записи и контроля траекторий движения торпед, а также уровня подводного шума во время проведения боевой подготовки флота, научно-исследовательских и заводских испытаний на акватории площадью до 100 квадратных километров и глубинах до 300 метров (при якорной постановке) или без ограничений (при безъякорной постановке). В состав оборудования МПГ входят до 36 радиоакустических буев со спутниковой навигационной системой и пульт управления с планшетом обстановки размещаемые на судне обеспечения или на береговом центре.

Для контроля местоположения судов, кораблей и летательных аппаратов используют передатчики УКВ-диапазона, которые связаны с навигационным оборудованием объектов. На планшете обстановки отслеживаются траектории целей и торпед, местоположения надводных и подводных средств обеспечения в режиме реального времени.

Методики обработки данных разработанные российскими специалистами сочетают в себе математические и эмпирические процедуры и позволяют использовать штатную ГАС стреляющего надводного корабля или подводной лодки. Гидрология полигона учитывается специально разработанной аппаратурой измерения вертикального распределения скорости звука и комплектом программ расчета звуковых полей в районе испытаний российской разработки.

Комплекс торпедного оружия с универсальной глубоководной самонаводящейся торпедой поставляется заказчику в следующей комплектации:
— универсальная глубоководная самонаводящаяся торпеда в практической и боевой комплектации;
— запасные части торпед;
— эксплуатационное оборудование, предназначенное для приготовления, проверки и ремонта торпед;
— системы и оборудование для тренировки и обучения корабельных боевых расчетов;
— береговой комплекс техобслуживания УГСТ.

Практическая торпеда предназначена для обучения личного состава . Данная торпеда получается путем замены боевого зарядного отделения практическим отсеком. Положительная плавучесть такой торпеды обеспечивается за счет неполной заправки топливного резервуара.

Создание торпеды УГСТ стало результатом процесса эволюции российского торпедного оружия, стало ответом на тенденции в развитии средств поражения надводных кораблей и подводных лодок. Это произошло благодаря совершенствованию гидроакустики, увеличению вычислительных возможностей бортовой радиоэлектронной аппаратуры, оснащению торпед системами телеуправления высокой эффективности, а также разработке специалистами принципиально новых тактических приемов боевого применения торпед в современных условиях ведения боевых действий на море с учетом возможности активного противодействия торпеде.

Г) по роду заряда ВВ в зарядном отделении.

Назначение, классификация, размещение торпедного оружия.

Торпедой называется самодвижущийся управляемый подводный снаряд, снабженный зарядом обычного или ядерного ВВ и предназначенный для доставки заряда к цели и его подрыва.

Для атомных и дизельных торпедных подводных лодок торпедное оружие является главным видом оружия, с помощью которого они решают свои основные задачи.

На ракетных подводных лодках торпедное оружие является основным оружием самообороны от подводного и надводного противника. Одновременно с этим ракетным подводным лодкам после выполнения ракетной стрельбы может быть поставлена задача по нанесению торпедного удара по целям противника.

На противолодочных кораблях и некоторых других надводных кораблях торпедное оружие стало одним из основных видов противолодочного оружия. В то же время с этих кораблей с помощью торпед возможно нанесение торпедного удара (в определенных условиях тактической обстановки) и по надводным кораблям противника.

Таким образом, современное торпедное оружие на подводных лодках и надводных кораблях позволяет как самостоятельно, так и во взаимодействии с другими силами флота наносить эффективные удары по подводным и надводным целям противника и решать задачи самообороны.

Независимо от типа носителя с помощью торпедного оружия в настоящее время решаются следующиеосновные задачи.

Уничтожение атомных ракетных подводных лодок противника

Уничтожение крупных боевых надводных кораблей противника (авианосцев, крейсеров, противолодочных кораблей);

Уничтожение атомных и дизельных многоцелевых подводных лодок противника;

Уничтожение транспортов, десантных и вспомогательных кораблей противника;

Нанесение удара по гидротехническим сооружениям и другим объектам противника, расположенным у уреза воды.

На современных подводных лодках и надводных кораблях подторпедным оружием понимается комплекс оружия и технических средств, включающий в себя следующие основные элементы:

торпеды различных типов;

Торпедные аппараты;

Систему управления торпедной стрельбой.

Непосредственно к комплексу торпедного оружия примыкают различные вспомогательные технические средства носителя, предназначенные для повышения боевых свойств оружия и удобства его обслуживания. К таким вспомогательным средствам (как правило, на подводных лодках) относятся торпедопогрузочное устройство (ТПУ), устройство быстрого заряжания торпед в торпедные аппараты (УБЗ), система хранения запасных торпед, аппаратура контроля.

Количественный состав торпедного оружия, его роль и круг боевых задач, решаемых этим оружием, определяется классом, типом и основным назначением носителя.


Так, например, на атомных и дизельных торпедных подводных лодках, где торпедное оружие является главным видом оружия, состав его представлен наиболее полночи включает в себя:

Боекомплект различных торпед (до 20 шт.), размещенных непосредственно в трубах торпедных аппаратов и на стеллажах а торпедном отсеке;

Торпедные аппараты (до 10 труб), имеющие либо один калибр, либо различные калибры, что зависит от типа применяемых торпед,

Систему управления торпедной стрельбой, являющуюся либо самостоятельной специализированной системой приборов управления торпедной стрельбой (ПУТС), либо частью (блоком) общекорабельной боевой информационно-управляющей системы (БИУС).

Кроме того, такие подводные лодки оборудованы всеми необходимыми вспомогательными устройствами.

Торпедные подводные лодки с помощью торпедного оружия решают свои основные задачи по нанесению удара и уничтожению подводных лодок, надводных кораблей и транспортов противника. В определенных условиях они применяют торпедное оружие в целях самообороны от противолодочных кораблей и подводных лодок противника.

Торпедные аппараты подводных лодок, имеющих на вооружении ракетные противолодочные комплексы (РПК), одновременно служат пусковыми установками для противолодочных ракет. В этих случаях для погрузки, хранения и заряжания ракет используются те же торпедопогрузочные устройства, стеллажи и устройство быстрого заряжания, что и для торпед. Попутно отметим, что торпедные аппараты подводных лодок могут использоваться для хранения и постановки мин при выполнении минно-заградительных боевых задач.

На ракетных подводных лодках состав торпедного оружия аналогичен рассмотренному выше и отличается от него только меньшим числом торпед, торпедных аппаратов и мест хранения. Система управления торпедной стрельбой является, как правило, частью общекорабельной БИУС. На этих подводных лодках торпедное оружие предназначено в основном для самообороны от противолодочных подводных лодок и кораблей противника. Эта особенность обусловливает запас торпед соответствующего типа и назначения.

Информация о цели, необходимая для решения задач торпедной стрельбы, на подводных лодках поступает в основном от гидроакустического комплекса или гидроакустической станции. В определенных условиях эта информация может быть получена от радиолокационной станции или же от перископа.

Торпедное оружие противолодочных кораблей входит в состав их противолодочного вооружения и является одним из наиболее эффективных видов противолодочного оружия. В состав торпедного оружия входят:

Боекомплект противолодочных торпед (до 10 шт.);

Торпедные аппараты (от 2 до 10),

Система управления торпедной стрельбой.

Число принимаемых торпед, как правило, соответствует числу труб торпедных аппаратов, так как торпеды хранятся только в трубах аппаратов. Следует отметить, что в зависимости от поставленной задачи противолодочные корабли могут принимать (помимо противолодочных) также торпеды для стрельбы по надводным кораблям и универсальные торпеды.

Число торпедных аппаратов на противолодочных кораблях определяется их подклассом и проектом. На малых противолодочных кораблях (мпк) и катерах (пка) устанавливаются, как правило, одно- или двухтрубные торпедные аппараты с общим числом труб до четырех. На сторожевых кораблях (скр) и больших противолодочных кораблях (бпк) устанавливается обычно по два четырех- или пятитрубных торпедных аппарата, размещаемых побортно на верхней палубе или в специальных выгородках в борту корабля.

Системы управления торпедной стрельбой на современных противолодочных кораблях являются, как правило, частью общекорабельной комплексной системы управления стрельбой противолодочным оружием. Однако не исключаются случаи установки на кораблях специализированной системы ПУТС.

На противолодочных кораблях основными средствами обнаружения и целеуказания для обеспечения боевого применения торпедного оружия по подводным лодкам противника являются гидроакустические станции, а для стрельбы по надводным кораблям - радиолокационные станции. В то же время в целях более полного использования боевых и тактических свойств торпед корабли; могут получать целеуказание и от внешних источников информации (взаимодействующих кораблей, вертолетов, самолетов). При стрельбе по надводной цели целеуказание выдается радиолокационной станцией.

Состав торпедного оружия надводных кораблей других классов и типов (эскадренных миноносцев, ракетных крейсеров) в принципе аналогичен рассмотренному выше. Специфика заключается лишь в типах торпед, принятых а торпедные аппараты.

Торпедные катера, на которых торпедное оружие, так же как и на торпедных подводных лодках, является главным видом оружия, несут два или четыре однотрубных торпедных аппарата и соответ­ственно две или четыре торпеды, предназначенные для ударов по надводным кораблям противника. На катерах устанавливается система управления торпедной стрельбой, включающая в себя радиолокационную станцию, которая служит основным источником информации о цели.

К положительным качествам торпед, оказывающим влияние на успешность их боевого применения, относятся:

Относительная скрытность боевого применения торпед с подводных лодок по надводным кораблям и с надводных кораблей по подводным лодкам, обеспечивающая внезапность нанесения удара;

Поражение надводных кораблей в наиболее уязвимой их части корпуса - под днищем;

Поражение подводных лодок, находящихся на любых глубинах их погружения,

Относительная простота устройств, обеспечивающих боевое применение торпед. Большое разнообразие задач, при решении которых носителями используется торпедное оружие, обусловило создание торпед различных типов, которые можно классифицировать по следующим основным признакам:

а) по назначению:

Противолодочные;

Против надводных кораблей;

Универсальные (против подводных лодок и надводных кораблей);

б) по типу носителя:

Корабельные;

Лодочные;

Универсальные,

Авиационные;

Боевые части противолодочных ракет и самодвижущихся мин

в) по калибру:

Малогабаритные (калибром 40 см) ;

Крупногабаритные (калибром более 53 см).

С зарядом обычного взрывчатого вещества;

С ядерным боеприпасом;

Практические (без заряда).

д) по типу энергосиловой установки:

С тепловой энергетикой (парогазовые);

Электрические;

Реактивные.

е) по способу управления:

Автономно управляемые (прямоидущие и маневрирующие);

Самонаводящиеся (в одной или двух плоскостях);

Телеуправляемые;

С комбинированным управлением.

ж) по типу аппаратуры самонаведения:

С активной СН;

С пассивной СН;

С комбинированной СН;

С неакустической СН.

Как видно из классификации, семейство торпед весьма велико. Но несмотря на такое широкое разнообразие, все современные торпеды близки друг другу по своим принципиальным положениям устройства и принципа действия.

Наша с вами задача состоит в том, чтобы эти принципиальные положения изучить и запомнить.


Большинство современных образцов торпед (независимо от их назначения, характера носителя и калибра) имеет типовую конструкцию корпуса и компоновку основных приборов, агрегатов и узлов. Они отличаются в зависимости от назначения торпеды, что обусловливается главным образом различными видами используемой в них энергетики и принципом действия энергосиловой установки. Как правило, торпеда состоит из четырех основных частей:

зарядного отделения (с аппаратурой СН).

отделения энергокомпонентов (с отсеком пускорегулирующей аппаратуры -для торпед с тепловой энергетикой) или аккумуляторного отделения (для электрических торпед).

Кормового отделения

Хвостовой части.

Электрическая торпеда

1 - боевое зарядное отделение; 2 - инерционные взрыватели; 3 - аккумуляторная батарея; 4 - электродвигатель. 5 - хвостовая часть.

Современные стандартные торпеды, предназначенные для уничтожения надводных кораблей, имеют:

длину – 6-8 метров.

массу -около 2 тонн и более.

глубину хода- 12-14м.

дальность - свыше 20 км.

скорость хода - более 50 уз.

Оснащение таких торпед ядерным боеприпасом обусловливает возможность их применения не только для нанесения ударов по надводным кораблям, но также для уничтожения подводных лодок противника и разрушения береговых объектов, находящихся у уреза воды.

Противолодочные электрические торпеды имеют скорость 30 - 40 уз при дальности 15-16 км. Их главное достоинство заключается в способности поражать подводные лодки, находящиеся на глубине в несколько сот метров.

Применение в торпедах систем самонаведения - одноплоскостной, обеспечивающей автоматическое наведение торпеды на цель в горизонтальной плоскости, или двухплоскостной (в противолодочных торпедах) - для наведения торпеды на подводную лодку - цель как по направлению, так и по глубине резко повышает боевые возможности торпедного оружия.

Корпуса (оболочки) торпед выполнены из стали или алюминиево-магниевых сплавов высокой прочности. Основные части герметично соединяются между собой и образуют корпус торпеды, имеющий обтекаемую форму, что способствует уменьшению сопротивления при ее движении в воде. Прочность и герметичность корпусов торпед позволяет подводным лодкам производить стрельбу ими с глубин, обеспечивающих высокую скрытность боевых действий, а надводным кораблям - наносить удар по подводным лодкам, находящимся на любых глубинах погружения. На корпусе торпеды устанавливаются специальные направляющие наделки для придания ей заданного положения в трубе торпедного аппарата.

В основных частях корпуса торпеды расположены:

Боевая принадлежность

Энергосиловая установка

Система управления движением и наведением

Вспомогательные механизмы.

Каждый из компонентов будут нами рассмотрены на практических занятиях по устройству торпедного оружия.

Торпедным аппаратом называется специальная установка, предназначенная для хранения приготовленной к выстрелу торпеды, ввода исходных данных в систему управления движением и наведением торпеды и выстреливания торпеды с заданной скоростью вылета в определенном направлении.

Торпедными аппаратами вооружаются все подводные лодки, противолодочные корабли, торпедные катера и некоторые корабли других классов. Их количество, размещение и калибр определяются конкретным проектом носителя. Из одних и тех же торпедных аппаратов могут выстреливаться различные образцы торпед или мин, а также производится постановка самоходных приборов помех и имитаторов подводных лодок.

Отдельные образцы торпедных аппаратов (как правило, на подводных лодках) могут использоваться как пусковые установки для стрельбы противолодочными ракетами.

Современные торпедные аппараты имеют отдельные конструктивные отличия и могут подразделяться по следующим основным признакам:

а) по носителям:

- торпедные аппараты подводных лодок;

Торпедные аппараты надводных кораблей;

б) по степени поведения:

- наводящиеся;

Ненаводящиеся (стационарные);

Откидывающиеся (поворотные);

в) по количеству торпедных труб:

- многотрубные,

Однотрубные;

г) по типу системы стрельбы:

- с пороховой системой,

С воздушной системой;

С гидравлической системой;

д) по калибру:

- малогабаритные (калибром 40 см);

Стандартные (калибром 53 см);

Большие (калибром более 53 см).

На подводной лодке торпедные аппараты ненаводящиеся. Они, как правило, размещаются в несколько ярусов, один над другим. Носовая часть торпедных аппаратов расположена в легком корпусе подводной лодки, а кормовая - в торпедном отсеке. Торпедные аппараты жестко связаны с набором корпуса и его оконечными переборками. Оси труб торпедных аппаратов параллельны друг другу или расположены под определенным углом к диаметральной плоскости подводной лодки.

На надводных кораблях наводящиеся торпедные аппараты представляют собой поворотную платформу с расположенными на ней торпедными трубами. Наведение торпедного аппарата осуществляется разворотом платформы в горизонтальной плоскости с помощью электрического или гидравлического привода. Ненаводящиеся торпедные аппараты жестко крепятся к палубе корабля. У откидывающихся торпедных аппаратов предусмотрено два фиксированных положения: походное, в котором они находятся в повседневных условиях, и боевое. Перевод торпедного аппарата в боевое положение осуществляется его разворотом на фиксированный угол, обеспечивающий возможность стрельбы торпедами.

Торпедный аппарат может состоять из одной или нескольких торпедных труб, изготовленных из стали и способных выдерживать значительное внутреннее давление. Каждая труба имеет переднюю и заднюю крышки.

На надводных кораблях передние крышки аппаратов легкие съемные, на подводных лодках - стальные, герметично укупоривающие носовой срез каждой трубы.

Задние крышки всех торпедных аппаратов закрываются с помощью специального кремальерного затвора и обладают большой прочностью. Открывание и закрывание передней и задней крышек торпедных аппаратов на подводных лодках осуществляется автоматически или ручными приводами.

Система блокировки торпедных аппаратов подводных лодок препятствует открытию передних крышек при открытых или не полностью закрытых задних крышках и наоборот. Задние крышки торпедных аппаратов надводных кораблей открываются и закрываются вручную.

Рис. 1 Установка электрогрелок в трубе ТА:

/-трубкодержатель; 2-штуцер; 3- низкотемпературная электрическая грелка НГТА; 4 - кабель.

Внутри торпедного аппарата по всей его длине устанавливаются четыре направляющие дорожки (верхняя, нижняя и две боковых) с пазами для наделок торпеды, обеспечивающие придание ей заданного положения при погрузке, хранении и движении при выстреле, а также обтюрирующие кольца. Обтюрирующие кольца, уменьшая зазор между корпусом торпеды и внутренними стенками аппарата, способствуют созданию выбрасывающего давления в его кормовой части в момент выстрела. Для удержания торпеды от случайных перемещений служит хвостовой упор, размещенный в задней крышке, а также стопор, автоматически убирающийся перед стрельбой.

Торпедные аппараты надводных кораблей могут иметь штормовые стопоры с ручным приводом.

Доступ к впускному и запирающему клапанам, устройству вентиляции электрических торпед осуществляется с помощью герметично закрываемых горловин. Откидывание курка торпеды производитсякурковым зацепом. Для ввода исходных данных в торпеду на каждом аппарате устанавливается группа периферийных приборов системы управления стрельбой с приводами ручного и дистанционного управления. Основными приборами этой группы являются:

- установщик прибора курса (УПК или УПМ) -для ввода угла поворота торпеды после выстрела, ввода угловых и линейных величии, обеспечивающих маневрирование в соответствии с заданной программой, установки дистанции включения системы самонаведения, борта цели,

- прибор остановки глубины (ЛУГ) - для ввода в торпеду установочной глубины хода;

- прибор установки режима (ПУР) - для установки режима вторичного поиска самонаводящихся торпед и включения силовой плюсовой цепи электропитания.

Ввод исходных данных в торпеду определяется конструктивными особенностями установочных головок ее приборов, а также принципом работы периферийных приборов торпедного аппарата. Он может осуществляться с помощью механических пли электрических приводов, когда шпиндели периферийных приборов соединяются со шпинделями приборов торпеды специальными муфтами. Их отключение производится автоматически в момент выстрела до начала движения торпеды в трубе торпедного аппарата. Отдельные образцы торпед и торпедных аппаратов могут иметь для этой цели самогерметизирующиеся электрические штепсельные разъемы или приборы бесконтактного ввода данных.

С помощью системы стрельбы обеспечивается выстреливание торпеды из торпедного аппарата с заданной скоростью вылета.

На надводных кораблях она может бытьпороховой иливоздушной.

Пороховая система стрельбы состоит из патронника специальной конструкции, размещенного непосредственно на торпедном аппарате, и газопровода. Патронник имеет камеру для размещения порохового выбрасывающего патрона, а также сопло с решеткой - регулятором давления. Воспламенение патрона может производиться вручную или в электрическую с помощью приборов цепи стрельбы. Образующиеся при этом пороховые газы, поступая по газопроводу к периферийным приборам, обеспечивают расстыковку их шпинделей с установочными головками прибора курса и автомата глубины торпеды, а также снятие стопора, удерживающего торпеду. По достижении необходимого давления пороховых газов, поступающих в торпедный аппарат, происходит выстреливание торпеды и она входит в воду на определенном расстоянии от борта.

У торпедных аппаратов с воздушной системой стрельбы выстреливание торпеды производится сжатым воздухом, хранящимся в боевом баллоне.

Торпедные аппараты подводных лодок могут иметьвоздушную илигидравлическую систему стрельбы. Эти системы позволяют применять торпедное оружие в условиях значительного забортного давления (при нахождении подводной лодки на глубинах 200 м и более) и обеспечивают скрытность торпедного залпа. Основными элементами воздушной системы стрельбы подводных торпедных аппаратов являются: боевой баллон с боевым клапаном н воздушными трубопроводами, стрельбовой щиток, блокировочное устройство, глубоководный регулятор времени и выпускной клапан системы БТС (беспузырной торпедной стрельбы) с арматурой.

Боевой баллон служит для хранения воздуха высокого давления и перепуска его в торпедный аппарат в момент выстрела после открытия боевого клапана. Открытие боевого клапана осуществляется воздухом, поступающим по трубопроводу от стрельбового щитка. При этом воздух сначала поступает к блокировочному устройству, обеспечивающему перепуск воздуха только после полного открытия передней крышки торпедного аппарата. От блокировочного устройства воздух поступает на подъем шпинделей прибора установки глубины, установщика прибора курса, снятие стопора и далее на открытие боевого клапана. Поступление сжатого воздуха в кормовую часть заполненного водой торпедного аппарата и его воздействие на торпеду приводит к ее выстреливанию. При движении торпеды в аппарате его свободный заторпедный объем будет увеличиваться, а давление в нем уменьшаться. Падение давления до определенного значения вызывает срабатывание глубоководного регулятора времени, что приводит к открытию выпускного клапана БТС. С его открытием начинается стравливание давления воздуха из торпедного аппарата в цистерну БТС подводной лодки. К моменту выхода торпеды воздушное давление стравливается полностью, выпускной клапан БТС закрывается, а торпедный аппарат заполняется забортной водой. Такая система стрельбы способствует скрытности применения торпедного оружия с подводных лодок. Однако необходимость дальнейшего увеличения глубины стрельбы требует значительного усложнения системы БТС. Это привело к созданию гидравлической системы стрельбы, которая обеспечивает выстреливание торпед из торпедных аппаратов подводных лодок, находящихся на любых глубинах погружения, давлением воды.

В состав гидравлической системы стрельбы торпедного аппарата входят: гидравлический цилиндр с поршнем и штоком, пневматический цилиндр с поршнем и штоком и боевой баллон с боевым клапаном. Штоки гидравлического и пневматического цилиндров жестко скреплены друг с другом. Вокруг трубы торпедного аппарата в ее кормовой части размещается кольцевая цистерна с кингстоном, связанная с задним срезом гидравлического цилиндра. В исходном положении кингстон закрыт. Перед выстрелом боевой баллон заполняется сжатым воздухом, а гидравлический цилиндр - водой. Закрытый боевой клапан препятствует поступлению воздуха в пневматический цилиндр.

В момент выстрела боевой клапан открывается и сжатый воздух, поступая в полость пневматического цилиндра, вызывает перемещение его поршня и связанного с ним поршня гидравлического цилиндра. Это приводит к нагнетанию воды из полости гидравлического цилиндра через открытый кингстон в систему торпедного аппарата и выстреливанию торпеды.

Перед выстрелом с помощью прибора ввода данных, размещенного на трубе торпедного аппарата, осуществляется автоматический подъем его шпинделей.

Рис.2 Структурная схема пятитрубного торпедного аппарата с модернизированной системой обогрева


Противокорабельная тепловая дальноходная самонаводящаяся торпеда. Постановление СМ СССР о разработке перспективной ударной торпеды Т-65 калибра 650 мм вышло 4 марта 1958 г. Основное назначение торпеды - борьба с авианосными ударными группами (АУГ).

Большая дальность хода (50 км) позволяет подводной лодке атаковать противника с дистанции, намного превышающей дальность обнаружения его гидролокатора. Тонкие торпеды 53-65К калибра 533 мм имеют дальность хода 16 км и лодка при выходе в торпедную атаку тонкими торпедами действует с большой степенью риска быть обнаруженной, так как вынуждена стрелять с дистанции меньшей либо равной, чем радиус обнаружения подводных лодок (РПЛО) любого противолодочного корабля. Система самонаведения противокорабельных торпед осуществляется по кильватерному следу цели. Однако для толстой торпеды время жизни активной части кильватерного следа цели составляет 5 минут, в то время как для тонкой торпеды это время равняется 3 минутам. Это значит что толстой торпеде для попадания по цели достаточно "заехать" в кильватерную струю, которая будет почти в два раза длиннее чем для тонкой торпеды. Вероятность попадания таким образом возрастает. Неконтактный магнитный взрыватель обеспечивает взрыв торпеды при проходе ее под целью. Наибольшее разрушение торпеда наносит, взорвавшись в 2-х метрах под килем цели.

В противолодочное охранение авианосца входит несколько противолодочных кораблей, которые располагаются в круговой походный ордер, дабы обеспечить надежное прикрытие авианосца со всех сторон. Помимо противолодочных кораблей в состав охранения входят противолодочные вертолеты, самолеты и подводные лодки. Они дополнительно осуществляют поиск подводных лодок, увеличивая тем самым зону противолодочной обороны авианосца. Таким образом глубина противолодочной обороны авианосца может быть увеличена до 200-240 миль. Однако дальняя противолодочная оборона, состоящая из подводных лодок, противолодочных самолетов и вертолетов является совсем не сплошной и в общем то довольно просто может быть преодолена. Ближняя противолодочная оборона, состоящая из противолодочных кораблей может иметь глубину от 20 до 80 миль в зависимости от количества кораблей в ордере. Однако чтобы обеспечить сплошную глубину ближней противолодочной обороны авианосца 80 миль необходимо мягко говоря очень много кораблей. Несложные расчеты показывают, что их там должно быть как минимум 20. В противном случае оборона опять же не будет сплошной. Поэтому радиус ближней противолодочной обороны авианосца ближе к 20 милям. В истории холодной войны между СССР и США были случаи когда советские подводные лодки находились внутри ордера довольно продолжительное время (до нескольких суток), и не были обнаружены. Причиной этому являлись и гидрология моря, и неплотность ордера охранения, и трудность совместного плавания кораблей в ордере длительное время, которая приводит к его смещению и нарушению, и снижение бдительности операторов гидроакустиков, да и вообще в реальности оно всё совершенно по-другому, нежели на карте и в учебниках. Все эти радиусы охранения не имеют 100-процентной гарантии обнаружения подводной лодки противника, к тому же если эту подводную лодку никто не ждет. Толстыми торпедами можно стрелять по центру ордера кораблей, даже не дожидаясь их раздельного пеленгования с дистанций порядка 180 кабельновых (18 миль, 20 км)
Именно поэтому натовцы были в ужасе когда узнали о нашей толстой торпеде.
Государственные испытния прототип торпеды прошел в 1965 г., но на ПЛ торпеда не размещалась из-за отсутствия носителей. В 1973 г. варианту торпеды с ядерной БЧ присвоен индекс 65-73 . Торпеда производилась заводом им.С.М.Кирова (г.Алма-Ата). Главный конструктор - В.А.Келейников, зам.главного конструктора по энерго-силовой установке - Г.И.Крестов, по корпусно-механической части - Л.С.Тарасов, по системе управления - В.С.Лужин.

Модернизация торпеды Т-65 под установку системы самонаведения производилась на основании решения ВМФ и Минсудпрома СССР от 10.07.1969 г. Разработка велась ЦНИИ "Гидроприбор" на основании ТТЗ от 21.11.1969 г., главные конструкторы - В.А.Келейников и Л.С.Тарасов. ОКР по согласованию с заказчиком проводилась без эскизного проекта. Государственные испытания торпеды 65-76 проводились в два этапа - на озере Иссык-Куль (успешно завершен в апреле 1975 г.) и на Северном флоте (июль-декабрь 1975 г.). В ходе Госиспытаний произведено 8 выстрелов торпедами в ходе 4 выходов в море ПЛА пр.671РТМ. Выстрелы производились в перископной глубины, с глубин 100 и 150 м и полностью подтвердили соответствие изделия ТТЗ. Приказом министра обороны СССР от 19.11.1976 г. на вооружение ПЛА пр.671РТМ принимается модификация торпеды с новой системой самонаведения (ССН) и без ядерного боеприпаса - торпеда 65-76 (обозначение НАТО - Type 65)

Разрезной макет торпеды 65-76А, музей г.Мурманск, май 2010 г. (фото - ХАХ, http://fotki.yandex.ru).


Доработка торпеды для применения с ПЛ третьего поколения начата по решению Главкома ВМФ СССР от 31.12.1982 г. в ЦНИИ "Гидроприбор", главный конструктор Б.И.Лаврищев. Новая модификация получила название 65-76А. Межведомственные испытания доработанных торпед проведены в 1983 г. В 1990 г. прошли заключительные испытания торпеды на Северном флоте. Производились стрельбы с ПЛА пр.945. В сентябре-октябре 1990 г. стрельбы практическими торпедами 65-76А проводились с ПЛАРК пр.949А. Торпеда 65-76А принята на вооружение 25.04.1991 г., начато её серийное производство.

По умолчанию данные торпеды 65-76.

Система управления и наведение - активная система самонаведения (ССН) с вертикальным лоцированием кильватерного следа (ВЛКС) цели с использованием ССН Е.Б.Парфенова от торпеды 53-65 (ЦНИИ "Гидроприбор", середина 1960-х годов). Телеуправление не применяется. Неконтактный электромагнитный взрыватель конструкции В.П.Шляхтенко.

Ввод стрельбовых данных на торпеде 65-76 механический ("шпиндельный"), на торпеде 65-76А - электрический.

Схема торпеды ТТ-5 , которую в СМИ часто выдают за схему торпеды 65-76А (http://www.kommersant.ru).


Двигатель:
65-76 / 65-76А - тепловой перекисный (на перекиси водорода) турбинный двигатель 2ДТ разработки НИИ "Мортеплотехника", двигатель испытан в 1963 г.;
Мощность двигателя - 1070 кВт

Газотурбинный двигатель 2ДТ торпеды 65-67, музей г.Мурманск, май 2010 г. (фото - ХАХ, http://fotki.yandex.ru).


ТТХ торпеды :
Калибр - 650 мм
Длина - 11.3 м

65-76 65-76А
Масса 4450 кг 4750 кг (по западным данным)
Масса ВВ 500 кг 557 кг (по западным данным)

Дальность хода (при скорости):
- 50 км (50 уз)
- 100 км (30-35 уз)
Скорость хода максимальная - 50 уз
Глубина хода - 14 м
Глубина пуска:
- до 150 м (по итогам госиспытаний, 1975 г.)
- до 480 м
Скорость ПЛ при пуске - до 13 уз

Тип БЧ :
- 65-73 - ядерная БЧ;
- 65-76 - обычная БЧ, мощность в тротиловом эквиваленте - 765 кг, по данным Доценко и ЦНИИ "Гидроприбор" - обычная либо ядерная БЧ;

При использовании торпеды с ядерной боевой частью, в параметры стрельбы вводится расчетная дистанция, которую необходимо пройти торпеде до цели. Наведения по кильватерному следу не осуществляется. Торпеда пройдя заданную дистанцию взрывается. Достаточно, чтобы цель оказалась в радиусе 1 километра от взрыва. Таким образом цель выйдет из строя с оценкой не ниже "отлично". Если торпеда взорвется в дистанции от 1 до 1,5-2 км от цели, то в этом случае цель получит повреждения, которые не позволят ей решать поставленную задачу.

Модификации :
- 65-73 (1973 г.) - вариант торпеды с тепловым перекисным двигателем и ядерной БЧ;

- 65-76 (1976 г.) - вариант торпеды с ССН по кильватерному следу и обычной БЧ.

- 65-76А (создание торпеды, испытания - 1986 г., государственные испытания на Северном флоте - 1990 г., принятие на вооружение - 1991 г.) - модификация торпеды 65-76 доработанная для применения с ПЛА третьего поколения. Увеличен срок хранения на носителе. Главный конструктор - Б.И.Лаврищев. Главные конструкторы ССН - Е.Б.Парфенов, неконтактного взрывателя - В.П.Шляхтенко, приборов управления - В.С.Лужин (ист. - Гусев Р. ). По данным ЦНИИ "Гидроприбор" торпеда создана в 1984 г.

Носители :
- ПЛА пр.671РТ (1974 г.)

- ПЛА пр.671РТМ (1976 г.)

- ПЛА пр.945 (1990 г.) - торпеды 65-76А;

- ПЛАРК пр.949А (1990 г.) - торпеды 65-76А;

Статус : СССР / Россия
- 1980 г. - торпеда 65-76 есть на вооружении ВМФ. Производственные возможности - 60 торпед в месяц.

- 2000 г. 12 августа - по официальной версии взрыв торпеды 65-76А послужил причиной гибели ПЛАРК К-141 "Курск" пр.949А. Причиной взрыва стала утечка топлива (пероксида водорода) из торпеды в торпедном аппарате №4. Специалистами-торпедистами версия пожара и взрыва торпеды 65-76 естественно отвергается.
Данная торпеда является самой безопасной в плане траспортировки. Были случаи когда она и падала с грузовика и катилась по пирсу. И ничего.

У НАТО никогда не было и нет торпеды с такой большой дальностью хода. Все их торпеды последних типов (МК-42, МК-48) имеют также сравнительно небольшую дальность хода - около 16 км.
Наши вероятные друзья из НАТО преложили все силы на то, чтобы толстую торпеду сняли с вооружения в ВМФ РФ. И сейчас ни на одной росиянской подводной лодке нет таких торпед. Выпуск их давно прекращен.

В этом разделе собрана информация о торпедном вооружении как отечественного производства, так и зарубежного. Вы сможете получить информацию о торпедах, которые сейчас стоят на вооружении, а также об образцах этого оружия, что использовались ранее.

Торпеда – это самодвижущийся подводный снаряд, содержащий взрывчатое вещество, который используется для уничтожения вражеских кораблей. Боевая торпеда – весьма сложный механизм, состоящий из двигателя, гребных винтов или реактивного сопла, приборов управления и боевой части.

Морские торпеды сегодня — одно из основных видов оружия надводных кораблей и подводных лодок. Особенно важны они для вооружения субмарин.

Отечественная историография считает, что первую торпеду изобрел российский конструктор Александров в 1865 году, но этот проект не был реализован в России. Первый действующий экземпляр этого оружия был разработан англичанином Уайтхедом в 1866 году, впервые в бою торпеды применили в 1877 году.

Морские торпеды получили широкое распространение уже в XX столетии. Появились специальные корабли – миноносцы, они имели торпедное вооружение, высокую скорость и слабое бронирование.

Японцы активно использовали торпедное оружие в русско-японской войне 1905 года. «Звездным часом» торпед стала Первая мировая война и появление первых подводных лодок. Торпеды стали основным оружием этих боевых кораблей. Первые торпеды работали благодаря парогазовым установкам или сжатому воздуху, поэтому оставляли за собой хорошо видимый след. Это демаскировало торпеду и позволяло кораблям противника уклоняться от них.

Электрическую торпеду создали немцы перед началом Второй мировой войны. В этом конфликте также активно использовались подводные лодки и торпедное вооружение.

Современные торпеды представляют смертельную угрозу для любого корабля. Они гораздо опаснее, чем противокорабельные ракеты. Дело в том, что если при взрыве ракеты часть энергии рассеивается, то вся энергия взрыва торпеды идет на разрушение корпуса корабля. Торпеды менее заметны, чем ракеты, они несут больше взрывчатого вещества, их очень трудно уничтожить во время движения.

Современные торпеды могут направляться с помощью гидролокатора или же управляться дистанционно с борта корабля через специальный кабель. Именно так устроены многие зарубежные образцы торпедного оружия, среди которых торпеды США, Германии, Великобритании. Мы подобрали для вас информацию о последних тенденциях развития торпедного оружия в разных странах.

Россия является производителем торпедного оружия. В советскую эпоху был создан огромный задел в этом направлении, сегодня торпеды ВМФ России в числе лучших в мире.

На вооружении российского флота есть особая торпеда, которая может поражать противника на огромной скорости – около 200 узлов. Это реактивная торпедо-ракета «Шквал».

Чтобы достичь такой небывалой скорости «Шквал» использует интересный физический принцип – суперкавитацию. То есть, во время движения вокруг «Шквала» создается газовый пузырь, который значительно снижает сопротивление водной среды. Но этого мало: чтобы добиться такой скорости, на торпеде вместо привычного гребного винта установлен реактивный двигатель.

Следует отметить, что развитие современных торпед движется несколько по иному пути: конструкторы стараются повысить дальность их стрельбы, уменьшить шумность и увеличить точность. Новейшие торпеды ВМФ России и западных стран имеют дальность десятки километров, они управляются по кабелю, их очень трудно обнаружить.

Министерство образования РФ

ТОРПЕДНОЕ ОРУЖИЕ

Методические указания

для самостоятельной работы

по дисциплине

«БОЕВЫЕ СРЕДСТВА ФЛОТА И ИХ БОЕВОЕ ПРИМЕНЕНИЕ»

Торпедное оружие: методические указания для самостоятельной работы по дисциплине «Боевые средства флота и их боевое применение» / Сост.: , ; СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 20с.

Предназначены для студентов всех профилей подготовки.

Утверждено

редакционно-издательским советом университета

в качестве методических указаний

Из истории развития и боевого применения

торпедного оружия

Появление в начале XIX в. бронированных кораблей с тепловыми двигателями обострило необходимость создания оружия, поражающего наиболее уязвимую подводную часть корабля. Таким оружием стала появившаяся в 40-х годах морская мина. Однако она обладала существенным недостатком: была позиционной (пассивной).

Первая в мире самодвижущаяся мина была создана в 1865 г. русским изобретателем.

В 1866 г. проект самодвижущегося подводного снаряда разработал работавший в Австрии англичанин Р. Уайтхед. Он же и предложил назвать снаряд по имени морского ската – «торпедо». Не сумев наладить собственное производство, российское Морское ведомство в 70-х годах закупило партию торпед Уайтхеда. Они проходили дистанцию 800 м со скоростью 17 узлов и несли заряд пироксилина массой 36 кг.

Первая в мире успешная торпедная атака была произведена командиром русского военного парохода лейтенантом (впоследствии – вице-адмиралом) 26 января 1878 г. Ночью, при сильном снегопаде на Батумском рейде, два спущенных с парохода катера подошли на 50 м к турецкому кораблю и одновременно выпустили по торпеде. Корабль быстро затонул почти со всей командой.

Принципиально новое торпедное оружие изменило взгляды на характер вооружённой борьбы на море – от генеральных сражений флоты переходили к ведению систематических боевых действий.

Торпеды 70-80-х годов XIX в. имели существенный недостаток: не имея приборов управления в горизонтальной плоскости, они сильно отклонялись от заданного курса и стрельба на дистанции более 600 м была малоэффективной. В 1896 г. лейтенант австрийского флота Л. Обри предложил первый образец гироскопического прибора курса с пружинным подзаводом, который удерживал торпеду на курсе в течение 3 – 4 мин. На повестку дня стал вопрос увеличения дальности хода.

В 1899 г. лейтенант русского флота изобрёл подогревательный аппарат, в котором сжигался керосин. Сжатый воздух перед подачей его в цилиндры рабочей машины нагревался и совершал уже большую работу. Внедрение подогрева увеличило дальность хода торпед до 4000 м на скоростях до 30 узлов.

В первую мировую войну 49% от общего числа потопленных крупных кораблей пришлось на долю торпедного оружия.

В 1915 г. торпеда впервые была использована с самолёта.

Вторая мировая война ускорила испытания и принятие на вооружение торпед с неконтактными взрывателями (НВ), системами самонаведения (ССН) и электрическими энергоустановками.

В последующие годы, несмотря на оснащение флотов новейшим ракетно-ядерным оружием , торпеды не утратили своего значения. Являясь самым эффективным противолодочным средством, они состоят на вооружении всех классов надводных кораблей (НК), подводных лодок (ПЛ) и морской авиации, а также стали основным элементом современных противолодочных ракет (ПЛУР) и неотъемлемой частью многих образцов современных морских мин. Современная торпеда – это сложный единый комплекс систем движения, управления движением, самонаведения и неконтактного подрыва заряда, созданных на основе современных достижений науки и техники.

1.ОБЩИЕ СВЕДЕНИЯ О ТОРПЕДНОМ ОРУЖИИ

1.1. Назначение, состав и размещение комплексов

торпедного оружия на корабле

Торпедное оружие (ТО) предназначено:

Для поражения подводных лодок (ПЛ), надводных кораблей (НК)

Разрушения гидротехнических и портовых сооружений.

Для этих целей применяются торпеды, состоящие на вооружении надводных кораблей, подводных лодок и самолетов (вертолетов) морской авиации. Кроме того, они используются в качестве боевых частей противолодочных ракет и мин-торпед.

Торпедное оружие представляет собой комплекс, включающий в себя:

Боекомплект торпед одного или нескольких типов;

Пусковые установки торпед – торпедные аппараты(ТА);

Приборы управления торпедной стрельбой (ПУТС);

Комплекс дополняется оборудованием, предназначенным для погрузки и выгрузки торпед, а также устройствами контроля за их состоянием в период хранения на носителе.

Число торпед в боекомплекте, в зависимости от типа носителя, составляет:

На НК – от 4 до 10;

На ПЛ – от 14-16 до 22-24.

На отечественных НК весь запас торпед размещается в торпедных аппаратах, установленных побортно на больших кораблях, и в диаметральной плоскости на средних и малых кораблях. Эти ТА являются поворотными, что обеспечивает их наведение в горизонтальной плоскости. На торпедных катерах ТА устанавливаются побортно неподвижно и являются ненаводящимися (стационарными).

На атомных ПЛ торпеды хранятся в первом (торпедном) отсеке в трубах ТА (4-8), а запасные – на стеллажах.

На большинстве дизель-электрических ПЛ торпедными отсеками являются первый и концевой.

ПУТС – комплекс приборов и линий связи – размещается на главном командном пункте корабля (ГКП), командном пункте командира минно-торпедной боевой части (БЧ-3) и на торпедных аппаратах.

1.2. Классификация торпед

Торпеды могут быть классифицированы по целому ряду признаков.

1. По предназначению:

Против ПЛ – противолодочные;

НК – противокорабельные;

НК и ПЛ – универсальные.

2. По носителям:

Для ПЛ – лодочные;

НК – корабельные;

ПЛ и НК – унифицированные;

Самолетов (вертолетов) – авиационные;

Противолодочных ракет;

Мин - торпед.

3. По типу энергосиловой установки (ЭСУ):

Парогазовые (тепловые);

Электрические;

Реактивные.

4. По способам управления:

С автономным управлением (АУ);

Самонаводящиеся (СН+АУ);

Телеуправляемые (ТУ + АУ);

С комбинированным управлением (АУ+СН+ТУ).

5. По типу взрывателя:

С контактным взрывателем (КВ);

С неконтактным взрывателем (НВ);

С комбинированным взрывателем (КВ+НВ).

6. По калибру:

400 мм; 533 мм; 650 мм.

Торпеды калибра 400 мм называют малогабаритными, 650 мм – тяжелыми. Большинство иностранных малогабаритных торпед имеют калибр 324 мм.

7. По режимам хода:

Однорежимные;

Двухрежимные.

Режимом в торпеде называют ее скорость и соответствующую этой скорости максимальную дальность хода. У двухрежимной торпеды, в зависимости от типа цели и тактической ситуации, режимы могут переключаться по ходу движения.

1.3. Основные части торпед



Любая торпеда конструктивно состоит из четырех частей (рис 1.1). Головная часть – боевое зарядное отделение (БЗО).Здесь размещаются: заряд взрывчатого вещества (ВВ), запальная принадлежность, контактный и неконтактный взрыватель. К переднему срезу БЗО крепится головка аппаратуры самонаведения.

В качестве ВВ в торпедах используются смесевые бризантные вещества с тротиловым эквивалентом 1,6-1,8. Масса ВВ, в зависимости от калибра торпеды, составляет 30-80 кг, 240-320 кг и до 600 кг соответственно.

Среднюю часть электрической торпеды называют аккумуляторным отделением, которое, в свою очередь, разделяется на батарейный и приборные отсеки. Здесь размещаются: источники энергии – батарея аккумуляторов, элементы пускорегулирующей аппаратуры, баллон с воздухом высокого давления и электродвигатель.

В парогазовой торпеде аналогичная составная часть носит название отделения энергокомпонентов и пускорегулирующей аппаратуры. В ней размещаются емкости с горючим, окислителем, пресной водой и тепловая машина – двигатель.

Третья составная часть торпеды любого типа называется кормовым отделением. Оно имеет конусообразную форму и содержит приборы управления движением, источники и преобразователи электроэнергии, а также основные элементы пневмогидравлической схемы.

К заднему срезу кормового отделения крепится четвертый составной элемент торпеды – хвостовая часть, заканчивающаяся движителями: гребными винтами или реактивным соплом.

На хвостовой части размещаются вертикальные и горизонтальные стабилизаторы, а на стабилизаторах – органы управления движением торпеды – рули.

1.4. Назначение, классификация, основы устройства

и принципы действия торпедных аппаратов

Торпедные аппараты (ТА) являются пусковыми установками и предназначены:

Для хранения торпед на носителе;

Введения в приборы управления движением торпеды установочных

данных (данных стрельбы);

Придания торпеде направления первоначального движения

(в поворотных ТА подводных кораблей);

Производства выстрела торпеды;

Торпедные аппараты ПЛ кроме этого могут быть использованы в качестве пусковых установок противолодочных ракет, а также для хранения и постановки морских мин.

ТА классифицируются по ряду признаков:

1) по месту установки:

2) по степени подвижности:

Поворотные (только на НК),

Неповоротные;

3) по количеству труб:

Однотрубные,

Многотрубные (только на НК);

4) по калибру:

Малого (400 мм, 324 мм),

Среднего (533 мм),

Крупного (650 мм);

5) по способу выстреливания

Пневматические,

Гидравлические (на современных ПЛ),

Пороховые (на малых НК).



Устройство ТА надводного корабля показано на рис 1.2. Внутри трубы ТА по всей ее длине располагаются четыре направляющие дорожки.

Внутри трубы ТА (рис. 1.3) по всей ее длине располагаются четыре направляющие дорожки.

Расстояние между противоположными дорожками соответствует калибру торпеды. В передней части трубы располагаются два обтюрирующих кольца, внутренний диаметр которых также равен калибру торпеды. Кольца препятствуют прорыву вперед рабочего тела (воздуха, воды, газа), подаваемого в заднюю часть трубы для выталкивания торпеды из ТА.

У всех ТА каждая труба имеет независимое устройство для производства выстрела. Вместе с тем, предусмотрена возможность залповой стрельбы из нескольких аппаратов с интервалом 0,5 – 1 с. Выстрел может производиться дистанционно с ГКП корабля или непосредственно с ТА, вручную.

Выстреливание торпеды производится путем подачи в кормовую часть ТА избыточного давления, обеспечивающего скорость выхода торпеды ~ 12 м/с.

ТА подводной лодки – стационарный, однотрубный. Число ТА в торпедном отсеке ПЛ – шесть или четыре. Каждый аппарат имеет прочные заднюю и переднюю крышки, заблокированные друг с дружкой. Это не дает возможности открыть заднюю крышку при открытой передней и наоборот. Подготовка аппарата к выстрелу включает заполнение его водой, выравнивание давления с забортным и открывание передней крышки.

У первых ТА ПЛ воздух, выталкивающий торпеду, выходил из трубы и всплывал на поверхность, образуя большой воздушный пузырь, демаскирующий подводную лодку. В настоящее время все ПЛ оснащаются системой беспузырной торпедной стрельбы (БТС). Принцип действия этой системы состоит в том, что после прохождения торпедой 2/3 длины ТА в его передней части автоматически открывается клапан, через который отработавший воздух выходит в трюм торпедного отсека.

На современных ПЛ для уменьшения шумности выстрела и обеспечения возможности стрельбы на больших глубинах устанавливаются гидравлические системы стрельбы. В качестве примера такая система приведена на рис. 1.4.

Последовательность операций при работе системы следующая:

Открывание автоматического забортного клапана (АЗК);

Выравнивание давления внутри ТА с забортным;

Закрывание АЗК;

Открывание передней крышки ТА;

Открывание воздушного клапана (ВК);

Движение поршней;

Перемещение воды в ТА;

Выстреливание торпеды;

Закрывание передней крышки;

Осушение ТА;

Открывание задней крышки ТА;



- загрузка стеллажной торпеды;

Закрывание задней крышки.

1.5. Понятие о приборах управления торпедной стрельбой

ПУТС предназначены для выработки данных, необходимых для прицельной стрельбы. Так как цель движется, возникает потребность решения задачи встречи торпеды с целью, т. е. нахождения той упреждённой точки, где эта встреча должна произойти.

Для решения поставленной задачи (рис. 1.5) необходимо:

1) обнаружить цель;

2) определить её местоположение относительно атакующего корабля, т. е. установить координаты цели – дистанцию Д0 и курсовой угол на цель КУ0 ;

3) определить параметры движения цели (ПДЦ) – курс Kц и скорость V ц;

4) рассчитать угол упреждения j, на который необходимо направить торпеду, т. е. рассчитать так называемый торпедный треугольник (на рис.1.5 выделен утолщёнными линиями). При этом допускается, что курс и скорость цели постоянны;

5) ввести необходимую информацию через ТА в торпеду.


обнаружения целей и определения их координат. Надводные цели обнаруживаются радиолокационными станциями (РЛС), подводные – гидроакустическими станциями (ГАС);

2) определения параметров движения цели. В их качестве используются ЭВМ или иные счетно-решающие приборы (СРП);

3) расчёта торпедного треугольника, также ЭВМ или иные СРП;

4) передачи и ввода информации в торпеды и контроля введённых в них данных. Таковыми могут быть линии синхронной связи и следящие устройства.

На рис.1.6 приведен вариант ПУТС, предусматривающий использование в качестве основного устройства обработки информации электронной системы, являющейся одной из схем общекорабельной боевой информационной управляющей системы (БИУС), и, как резервной – электромеханической. Такая схема применяется на современных под


ПГЭСУ торпед являются разновидностью тепловой машины (рис. 2.1). Источником энергии в тепловых ЭСУ является топливо, представляющее собою совокупность горючего и окислителя.

Используемые в современных торпедах виды топлива могут быть:

Многокомпонентными (горючее – окислитель – вода) (рис.2.2);

Унитарными (горючее смешано с окислителем – вода);

Твёрдые пороховые;



- твёрдые гидрореагирующие.

Тепловая энергия топлива образуется в результате химической реакции окисления или разложения веществ, входящих в его состав.

Температура сгорания топлива составляет 3000…4000°C. При этом возникает возможность размягчения материалов, из которых изготовлены отдельные узлы ЭСУ. Поэтому вместе с топливом в камеру сгорания подают воду, что снижает температуру продуктов сгорания до 600…800°C. Кроме того, впрыскивание пресной воды увеличивает объём парогазовой смеси, что существенно повышает мощность ЭСУ.

В первых торпедах использовалось топливо, включавшее в себя керосин и сжатый воздух в качестве окислителя. Такой окислитель оказался малоэффективным из-за низкого содержания кислорода. Составная часть воздуха – азот , не растворимая в воде, выбрасывалась за борт и являлась причиной демаскирующего торпеду следа. В настоящее время в качестве окислителей используют чистый сжатый кислород или маловодную перекись водорода . При этом продуктов сгорания, не растворимых в воде, почти не образуется и след практически не заметен.

Применение жидких унитарных топлив позволило упростить топливную систему ЭСУ и улучшить условия эксплуатации торпед.

Твёрдые топлива, являющиеся унитарными, могут быть мономолекулярными или смесевыми. Чаще используются последние. Они состоят из органического горючего, твёрдого окислителя и различных добавок. Количество выделяемого при этом тепла можно регулировать количеством подаваемой воды. Применение таких видов топлива исключает необходимость нести на борту торпеды запас окислителя. Это снижает массу торпеды, что значительно повышает скорость и дальность её

Двигатель парогазовой торпеды, в котором тепловая энергия преобразуется в механическую работу вращения гребных винтов, является одним из её главных агрегатов. Он определяет основные тактико-технические данные торпеды – скорость, дальность, следность, шумность.

Торпедные двигатели имеют ряд особенностей, которые отражаются на их конструкции:

Кратковременность работы;

Минимальное время выхода на режим и строгое его постоянство;

Работа в водной среде с высоким противодавлением выхлопу;

Минимальные масса и габариты при большой мощности;

Минимальный расход топлива.

Торпедные двигатели подразделяются на поршневые и турбинные. В настоящее время наибольшее распространение получили последние (рис. 2.3).

Энергокомпоненты подаются в парогазогенератор, где поджигаются зажигательным патроном. Образующаяся парогазовая смесь под дав



лением поступает на лопатки турбины, где, расширяясь, совершает работу. Вращение колеса турбины через редуктор и дифференциал передается на внутренний и внешний гребные валы, вращающиеся в противоположные стороны.

В качестве движителей большинства современных торпед используются гребные винты. Передний винт – на наружном валу с правым вращением, задний – на внутреннем – с левым. Благодаря этому уравновешиваются моменты сил, отклоняющих торпеду от заданного направления движения.

Эффективность двигателей характеризуется величиной коэффициента полезного действия с учётом влияния гидродинамических свойств корпуса торпеды. Коэффициент снижается при достижении винтами частоты вращения, при которой на лопастях начинается

кавитация 1 . Одним из путей борьбы с этим вредным явлением стало



применение насадок на винты, позволяющее получить водомётный движитель (рис. 2.4).

К числу основных недостатков ЭСУ рассмотренного типа относятся:

Высокая шумность связанная с большим числом быстро вращающихся массивных механизмов и наличием выхлопа;

Снижение мощности двигателя и, как следствие, скорости хода торпеды с ростом глубины, обусловленное увеличением противодавления выхлопным газам;

Постепенное уменьшение массы торпеды при её движении вследствие расхода энергокомпонентов;

Поиски путей, обеспечивающих исключение перечисленных недостатков, привели к созданию электрических ЭСУ.

2.1.2. Электрические ЭСУ торпед

Источниками энергии электрических ЭСУ являются химические вещества (рис. 2.5).

Химические источники тока должны отвечать ряду требований:

Допустимость высоких разрядных токов;

Работоспособность в широком интервале температур;

Минимальный саморазряд при хранении и отсутствие газовыделения;


1 Кавитация – образование в капельной жидкости полостей, заполненных газом, паром или их смесью. Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения.

Малые габариты и масса.

Наиболее широкое распространение в современных боевых торпедах нашли батареи одноразового действия.

Главным энергетическим показателем химического источника тока является его ёмкость – количество электричества, которое может отдать полностью заряженная батарея при разряде током определённой силы. Она зависит от материала, конструкции и величины активной массы пластин источников, разрядного тока, температуры, концентрации электро



лита и др.

Впервые в электрических ЭСУ были применены свинцово-кислотные аккумуляторные батареи (АБ). Их электроды: перекись свинца («-») и чистый губчатый свинец («+»), помещались в раствор серной кислоты. Удельная ёмкость таких батарей составляла 8 Вт · ч/кг массы, что в сравнении с химическими топливами было незначительной величиной. Торпеды с такими АБ имели малые скорость и дальность хода. Кроме этого, данные АБ имели высокий уровень саморазряда, а это требовало их периодической подзарядки при хранении на носителе, что было неудобно и небезопасно.

Следующим шагом в совершенствовании химических источников тока явилось применение щелочных АБ. В этих АБ в щелочной электролит помещались железоникелевые, кадмиево-никелевые или серебряно-цинковые электроды. Такие источники имели удельную ёмкость в 5-6 раз больше, чем свинцово-кислотные, что позволило резко увеличить скорость и дальность хода торпед. Их дальнейшее развитие привело к появлению одноразовых серебряно-магниевых батарей, использующих в качестве электролита забортную морскую воду. Удельная ёмкость таких источников возросла до 80 Вт · ч /кг, что вплотную приблизило скорости и дальности электрических торпед к аналогичным параметрам парогазовых.

Сравнительная характеристика источников энергии электрических торпед приведена в табл. 2.1.

Таблица 2.1

Двигателями электрических ЭСУ являются электродвигатели (ЭД) постоянного тока последовательного возбуждения (рис. 2.6).

Большинство торпедных ЭД являются двигателями бирототивного типа, в которых якорь и магнитная система вращаются одновременно в противоположные стороны. Они имеют большую мощность и не нуждаются в дифференциале и редукторе, что значительно снижает шумность и увеличивает удельную мощность ЭСУ.

Движители электрических ЭСУ аналогичны движителям парогазовых торпед.

Достоинствами рассмотренных ЭСУ являются:

Низкая шумность;

Постоянная, не зависящая от глубины хода торпеды мощность;

Неизменность массы торпеды в течение всего времени её движения.

К недостаткам следует отнести:


Источниками энергии реактивных ЭСУ являются вещества, приведённые на рис. 2.7.

Они представляют собой топливные заряды, выполненные в виде цилиндрических шашек или стержней, состоящих из смеси комбинаций представленных веществ (горючего, окислителя и добавок). Эти смеси обладают свойствами пороха. Реактивные двигатели не имеют промежуточных элементов – механизмов и гребных винтов. Основные части такого двигателя – камера сгорания и реактивное сопло. В конце 80-х годов в некоторых торпедах начали использовать гидрореагирующие топлива – сложные по составу твёрдые вещества на основе алюминия , магния или лития. Подогретые до температуры плавления, они бурно реагируют с водой, выделяя большое количество энергии.

2.2. Системы управления движением торпед

Движущаяся торпеда совместно с окружающей её морской средой образует сложную гидродинамическую систему. Во время движения на торпеду действуют:

Сила тяжести и выталкивающая сила;

Тяга двигателя и сопротивление воды;

Внешние воздействующие факторы (волнение моря, изменение плотности воды и др.). Первые два фактора известны и могут быть учтены. Последние – имеют случайный характер. Они нарушают динамическое равновесие сил, отклоняют торпеду от расчётной траектории.

Системы управления (рис. 2.8) обеспечивают:

Устойчивость движения торпеды на траектории;

Изменение траектории движения торпеды в соответствии с заданной программой;


В качестве примера рассмотрим структуру и принцип действия сильфонно - маятникового автомата глубины, изображенного на рис. 2.9.

Основой прибора является гидростатический аппарат на базе сильфона (гофрированная труба с пружиной) в комбинации с физическим маятником. Давление воды воспринимается крышкой сильфона. Оно уравновешивается пружиной, упругость которой устанавливается перед выстрелом в зависимости от заданной глубины движения торпеды.

Действие прибора осуществляется в следующей последовательности:

Изменение глубины торпеды относительно заданной;

Сжатие (или растяжение) пружины сильфона;

Перемещение зубчатой рейки;

Вращение шестерни;

Поворот эксцентрика;

Смещение балансира;

Движение клапанов золотника;

Перемещение поршня рулевой машинки;

Перекладка горизонтальных рулей;

Возврат торпеды на установленную глубину.

В случае появления дифферента торпеды происходит отклонение маятника от вертикального положения. При этом аналогично предыдущему перемещается балансир, что приводит к перекладке тех же рулей.

Приборы управления движением торпеды по курсу (K Т )

Принцип построения и действия прибора может быть пояснён схемой, изображённой на рис. 2.10.

Основой прибора является гироскоп с тремя степенями свободы. Он представляет собой массивный диск с лунками (углублениями). Сам диск подвижно укреплён в рамках, образующих так называемый кардановый подвес.

В момент выстрела торпеды воздух высокого давления из воздушного резервуара поступает на лунки ротора гироскопа. За 0.3…0,4 с ротор набирает до 20000 оборотов в минуту. Дальнейшее увеличение числа оборотов до 40000 и поддержание их на дистанции производится путем подачи напряжения на ротор гироскопа, являющегося якорем асинхронного ЭД переменного тока частотой 500 Гц. При этом гироскоп приобретает свойство сохранять неизменным направление своей оси в пространстве. Эта ось устанавливается в положение, параллельное продольной оси торпеды. В таком случае токосъёмник диска с полукольцами находится на изолированном зазоре между полукольцами. Цепь питания реле разомкнута, контакты реле KP тоже разомкнуты. Положение клапанов золотника определяется пружиной.



При отклонении торпеды от заданного направления (курса) поворачивается диск, связанный с корпусом торпеды. Токосъёмник оказывается на полукольце. Через обмотку реле начинает протекать ток. Замыкаются контакты Kp. Электромагнит получает питание, его стержень опускается вниз. Клапаны золотника смещаются, рулевая машинка перекладывает вертикальные рули. Торпеда возвращается к установленному курсу.

Если на корабле установлен неподвижный торпедный аппарат, то при торпедной стрельбе к углу упреждения j (см. рис.1.5) должен быть алгебрарически приплюсован курсовой угол, под которым находится цель в момент залпа (q 3 ). Полученный угол (ω), называемый углом гироскопического прибора, или углом первого поворота торпеды, может быть введён в торпеду перед выстрелом путём поворота диска с полукольцами. Таким образом исключается необходимость изменения курса корабля.

Приборы управления торпедой по крену (γ)

Крен торпеды – это поворот её вокруг продольной оси. Причинами крена являются циркуляция торпеды, перегребание одного из винтов и др. Крен приводит к отклонению торпеды от заданного курса и смещениям зон реагирования системы самонаведения и неконтактного взрывателя.

Креновыравнивающий прибор представляет собой сочетание гировертикали (вертикально установленного гироскопа) с маятником, перемещающимся в перпендикулярной плоскости, продольной оси торпеды. Прибор обеспечивает перекладку органов управления γ – элеронов в разные стороны – «враздрай» и, таким образом, возвращение торпеды к значению крена, близкому к нулю.

Приборы маневрирования



Предназначены для программного маневрирования торпеды по курсу на траектории движения. Так, например, в случае промаха торпеда начинает циркуляцию или зигзаг, обеспечивая неоднократное пересечение курса цели (рис. 2.11).

Прибор связан с наружным гребным валом торпеды. По числу оборотов вала определяется пройденное расстояние. В момент достижения установленной дистанции начинается маневрирование. Дистанция и вид траектории маневрирования вводятся в торпеду перед выстрелом.

Точность стабилизации движения торпеды по курсу приборами автономного управления, имея погрешность ~1% от пройденной дистанции, обеспечивает эффективную стрельбу по целям, идущим постоянным курсом и скоростью на дистанции до 3,5…4 км. На больших дистанциях эффективность стрельбы падает. При движении цели переменными курсом и скоростью точность стрельбы становится неприемлемой даже и на меньших расстояниях.

Стремление повысить вероятность поражения надводной цели, а также обеспечить возможность поражения ПЛ в подводном положении на неизвестной глубине, привели к появлению в 40-х годах торпед с системами самонаведения.

2.2.2. Системы самонаведения

Системы самонаведения (ССН) торпед обеспечивают:

Обнаружение целей по их физическим полям;

Определение положения цели относительно продольной оси торпеды;

Выработку необходимых команд рулевым машинкам;

Наведение торпеды на цель с точностью, необходимой для срабатывания неконтактного взрывателя торпеды.

ССН значительно повышает вероятность поражения цели. Одна самонаводящаяся торпеда эффективнее залпа из нескольких торпед с автономными системами управления. Особенно важны ССН при стрельбе по ПЛ, находящимися на большой глубине.

ССН реагирует на физические поля кораблей. Наибольшей дальностью распространения в водной среде обладают акустические поля. Поэтому ССН торпед являются акустическими и подразделяются на пассивные, активные и комбинированные.

Пассивные ССН

Пассивные акустические ССН реагируют на первичное акустическое поле корабля – его шум. Работают скрытно. Однако плохо реагируют на тихоходные (из-за слабого шума) и обесшумленные корабли. В этих случаях шум самой торпеды может оказаться больше шума цели.

Возможность обнаружения цели и определения её положения относительно торпеды обеспечивается созданием гидроакустических антенн (электроакустических преобразователей – ЭАП), обладающих направленными свойствами (рис. 2.12, а).

Наиболее широкое применение получили равносигнальный и фазоамплитудный методы.


В качестве примера рассмотрим ССН, использующую фазоамплитудный метод (рис. 2.13).

Приём полезных сигналов (шума движущегося объекта) осуществляется ЭАП, состоящим из двух групп элементов, формирующих одну диаграмму направленности (рис. 2.13, а). При этом в случае отклонения цели от оси диаграммы на выходах ЭАП действуют два равных по значению, но сдвинутых по фазе j напряжения E 1 и E 2. (рис. 2.13, б).

Фазосдвигающее устройство сдвигает оба напряжения по фазе на один и тот же угол u (обычно равный p/2) и производит суммирование действующих сигналов следующим образом:

E 1+ E 2= U 1 и E 2+ E 1= U 2.

В результате этого напряжение одинаковой амплитуды, но разной фазы E 1 и E 2 преобразуются в два напряжения U 1 и U 2 одной и той же фазы, но разной амплитуды (отсюда название метода). В зависимости от положения цели относительно оси диаграммы направленности можно получить:

U 1 > U 2 – цель правее оси ЭАП;

U 1 = U 2 – цель на оси ЭАП;

U 1 < U 2 – цель левее оси ЭАП.

Напряжения U 1 и U 2 усиливаются, преобразуются детекторами в постоянные напряжения U ’1 и U ’2 соответствующей величины и подаются на анализирующе-командное устройство АКУ. В качестве последнего может быть использовано поляризованное реле с якорем, находящемся в нейтральном (среднем) положении (рис. 2.13, в).

При равенстве U ’1 и U ’2 (цель на оси ЭАП) ток в обмотке реле равен нулю. Якорь неподвижен. Продольная ось движущейся торпеды направлена на цель. В случае смещения цели в ту или иную сторону через обмотку реле начинает протекать ток соответствующего направления. Возникает магнитный поток, отклоняющий якорь реле и вызывающий перемещение золотника рулевой машинки. Последняя обеспечивает перекладку рулей, а значит и поворот торпеды до возвращения цели на продольную ось торпеды (на ось диаграммы направленности ЭАП).

Активные ССН

Активные акустические ССН реагируют на вторичное акустическое поле корабля – отражённые сигналы от корабля или от его кильватерной струи (но не на шум корабля).

В своём составе они должны иметь, помимо рассмотренных ранее узлов, передающее (генерирующее) и коммутационное (переключающее) устройства (рис.2.14). Коммутационное устройство обеспечивает переключение ЭАП с излучения на приём.


Газовые пузырьки являются отражателями звуковых волн. Длительность сигналов, отражённых от кильватерной струи, больше длительности излучаемых. Это отличие и используется как источник информации о КС.

Торпеда выстреливает со смещением точки прицеливания в сторону, противоположную направлению движения цели так, чтобы она оказалась за кормой цели и пересекла кильватерную струю. Как только это происходит, торпеда делает поворот в сторону цели и снова входит в кильватерную струю под углом порядка 300. Так продолжается до момента прохождения торпеды под целью. В случае проскакивания торпеды перед носом цели торпеда делает циркуляцию, снова обнаруживает кильватерную струю и повторно осуществляет маневрирование.

Комбинированные ССН

Комбинированные системы включают в себя как пассивную, так и активную акустические ССН, что позволяет исключить недостатки каждой в отдельности. Современные ССН обнаруживают цели на дистанциях до 1500…2000 м. Поэтому при стрельбе на большие дистанции и особенно по резко маневрирующей цели возникает необходимость корректуры курса торпеды до момента захвата цели ССН. Эту задачу выполняют системы телеуправления движением торпеды.

2.2.3. Системы телеуправления

Системы телеуправления (ТУ) предназначены для коррекции траектории движения торпеды с корабля-носителя.

Телеуправление осуществляется по проводу (рис. 2.16, а, б).

Чтобы уменьшить натяжение провода при движении и корабля, и торпеды используют две одновременно разматывающиеся вьюшки. На подводной лодке (рис. 2.16, а) вьюшка 1 размещается в ТА и выстреливается вместе с торпедой. Она удерживается бронированным кабелем длиной порядка тридцати метров.

Принцип построения и действия системы ТУ поясняется рис. 2.17. С помощью гидроакустического комплекса и его индикатора осуществляется обнаружение цели. Полученные данные о координатах этой цели поступают в счетно-решающий комплекс. Сюда же подаются сведения о параметрах движения своего корабля и установленной скорости торпеды. Счетно-решающий комплекс вырабатывает курс торпеды КТ и h T –глубину ее движения. Эти данные вводятся в торпеду, и производится выстрел.



С помощью датчика команд осуществляется преобразование текущих параметров КТ и h T в серию импульсных электрических кодированных сигналов управления. Эти сигналы по проводу передаются на торпеду. Система управления торпеды декодирует принятые сигналы и преобразует их в напряжения, являющиеся управляющими для работы соответствующих каналов управления.

В случае необходимости, наблюдая на индикаторе гидроакустического комплекса носителя за положением торпеды и цели, оператор, используя пульт управления, может корректировать траекторию движения торпеды, направляя ее на цель.

Как уже было отмечено, на больших дистанциях (более 20 км) ошибки телеуправления (из-за ошибок гидроакустического комплекса) могут составлять сотни метров. Поэтому систему ТУ совмещают с системой самонаведения. Последняя включается по команде оператора на расстоянии 2…3 км от цели.

Рассмотренная система ТУ является односторонней. Если с торпеды на корабль поступают сведения о состоянии бортовых приборов торпеды, траектории ее движения, характере маневрирования цели, то такая система ТУ будет двухсторонней. Новые возможности в реализации двухсторонних систем ТУ торпедой открывает применение волоконно - оптических линий связи.

2.3. Запальная принадлежность и взрыватели торпед

2.3.1. Запальная принадлежность

Запальной принадлежностью (ЗП) боевого заряда торпеды называют совокупность первичного и вторичного детонаторов.

Состав ЗП обеспечивает ступенчатую детонацию ВВ БЗО, что повышает безопасность обращения с окончательно приготовленной торпедой, с одной стороны, и гарантирует надежную и полную детонацию всего заряда – с другой.

Первичный детонатор (рис. 2.18), состоящий из капсюля воспламенителя и капсюля детонатора, снаряжается высокочувствительными (инициирующими) ВВ – гремучей ртутью или азидом свинца, которые взрываются от накола или нагрева. В целях безопасности первичный детонатор содержит небольшое количество ВВ, недостаточное для взрыва основного заряда.



Вторичный детонатор – запальный стакан – содержит менее чувствительное бризантное ВВ – тетрил, флегматизированный гексоген в количестве 600…800 г. Этого количества уже достаточно для детонации всего основного заряда БЗО.

Таким образом, взрыв осуществляется по цепочке: взрыватель – капсюль-воспламенитель – капсюль-детонатор – запальный стакан – заряд БЗО.

2.3.2. Контактные взрыватели торпед

Контактный взрыватель (КВ) торпеды предназначен для накола капсюля воспламенителя первичного детонатора и вызова тем самым взрыва основного заряда БЗО в момент контакта торпеды с бортом цели.

Наибольшее распространение получили контактные взрыватели ударного (инерционного) действия. При ударе торпеды в борт цели инерционное тело (маятник) отклоняется от вертикального положения и освобождает боёк, который под действием боевой пружины движется вниз и накалывает капсюль – воспламенитель.

При окончательном приготовлении торпеды к выстрелу контактный взрыватель соединяется с запальной принадлежностью и устанавливается в верхнюю часть БЗО.

Во избежание взрыва снаряжённой торпеды от случайного сотрясения или удара о воду инерционная часть взрывателя имеет предохранительное устройство, стопорящее боёк. Стопор связан с вертушкой, начинающей вращение с началом движения торпеды в воде. По прохождении торпедой дистанции около 200 м червяк вертушки расстопоривает боёк и взрыватель приходит в боевое положение.

Стремление воздействовать на самую уязвимую часть корабля – его днище и обеспечить при этом неконтактный подрыв заряда БЗО, производящий больший разрушительный эффект, привело к созданию в 40-х годах неконтактного взрывателя.

2.3.3. Неконтактные взрыватели торпед

Неконтактный взрыватель (НВ) замыкает цепь запала на подрыв заряда БЗО в момент прохождения торпеды вблизи цели под воздействием на взрыватель того или иного физического поля цели. При этом глубина хода противокорабельной торпеды устанавливается на несколько метров больше величины предполагаемой осадки корабля – цели.

Наиболее широкое применение получили акустические и электромагнитные неконтактные взрыватели.



Устройство и действие акустического НВ поясняет рис. 2.19.

Импульсный генератор (рис. 2.19, а) вырабатывает кратковременные импульсы электрических колебаний ультразвуковой частоты, следующие через малые промежутки времени. Через коммутатор они поступают на электроакустические преобразователи (ЭАП), преобразующие электрические колебания в ультразвуковые акустические, распространяющиеся в воде в пределах зоны, показанной на рисунке.

При прохождении торпеды вблизи цели (рис. 2.19, б) от последней будут получены отражённые акустические сигналы, которые воспринимаются и преобразуются ЭАП в электрические. После усиления они анализируются в исполнительном устройстве и запоминаются. Получив несколько аналогичных отражённых сигналов подряд, исполнительное устройство подключает источник питания к запальной принадлежности – происходит взрыв торпеды.



Устройство и действие электромагнитного НВ поясняется рис. 2.20.

Кормовая (излучающая) катушка создаёт переменное магнитное поле. Оно воспринимается двумя носовыми (приёмными) катушками, включёнными встречно, в результате чего их разностная ЭДС равна
нулю.

При прохождении торпеды вблизи цели, имеющей своё электромагнитное поле, происходит искажение поля торпеды. ЭДС в приёмных катушках станут разными и появится разностная ЭДС. Усиленное напряжение поступает на исполнительное устройство, подающее питание на запальное устройство торпеды.

На современных торпедах используются комбинированные взрыватели, являющиеся сочетанием контактного с одним из типов неконтактного взрывателя.

2.4. Взаимодействие приборов и систем торпед

при их движении на траектории

2.4.1. Назначение, основные тактико-технические параметры

парогазовых торпед и взаимодействие приборов

и систем при их движении

Парогазовые торпеды предназначены для уничтожения надводных кораблей, транспортов и, реже, ПЛ противника.

Основные тактико-технические параметры парогазовых торпед, получивших наиболее широкое распространение, приведены в табл.2.2.

Таблица 2.2

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

70 или 44

Турбина

Турбина

Турбина

Нет сведений

Зарубежные

Турбина

Поршневой

Открывание запирающего воздушного клапана (см. рис. 2.3) перед выстрелом торпеды;

Выстрел торпеды, сопровождаемый её движением в ТА;

Откидывание курка торпеды (см. рис. 2.3) курковым зацепом в трубе

торпедного аппарата;

Открывание машинного крана;

Подача сжатого воздуха непосредственно на прибор курса и креновыравнивающий прибор для раскручивания роторов гироскопов, а также на воздушный редуктор;

Воздух пониженного давления с редуктора поступает на рулевые машинки, обеспечивающие перекладку рулей и элеронов, и на вытеснение воды и окислителя из резервуаров;

Поступление воды на вытеснение горючего из резервуара;

Подача горючего, окислителя и воды на парогазовый генератор;

Поджигание топлива зажигательным патроном;

Образование парогазовой смеси и подача её на лопатки турбины;

Вращение турбины, а значит, и винтовой торпеды;

Попадание торпеды в воду и начало её движения в ней;

Действие автомата глубины (см. рис. 2.10), прибора курса (см. рис. 2.11), креновыравнивающего прибора и движение торпеды в воде по установленной траектории;

Встречные потоки воды вращают вертушку, которая при проходе торпедой 180…250 м приводит ударный взрыватель в боевое положение. Этим исключается подрыв торпеды на корабле и вблизи его от случайных толчков и ударов;

Через 30…40 с после выстрела торпеды включаются НВ и ССН;

ССН начинает поиск КС, излучая импульсы акустических колебаний;

Обнаружив КС (получив отражённые импульсы) и пройдя его, торпеда поворачивает в сторону цели (сторона поворота введена перед выстрелом);

ССН обеспечивает маневрирование торпеды (см. рис. 2.14);

При прохождении торпеды вблизи цели или при ударе о неё срабатывают соответствующие взрыватели;

Взрыв торпеды.

2.4.2. Назначение, основные тактико-технические параметры электрических торпед и взаимодействие приборов

и систем при их движении

Электрические торпеды предназначены для уничтожения подводных лодок противника.

Основные тактико-технические параметры электрических торпед, получивших наиболее широкое распространение. Приведены в табл. 2.3.

Таблица 2.3

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Зарубежные

сведений

сведений


* СЦАБ - серебряно-цинковая аккумуляторная батарея.

Взаимодействие узлов торпеды осуществляется следующим образом:

Открывание запирающего клапана баллона ВВД торпеды;

Замыкание «+» электрической цепи – перед выстрелом;

Выстрел торпеды, сопровождаемый её движением в ТА (см. рис. 2.5);

Замыкание пускового контактора;

Подача воздуха высокого давления на прибор курса и креновыравнивающий прибор;

Подача редуцированного воздуха в резиновую оболочку для вытеснения из неё электролита в химическую батарею (возможный вариант);

Вращение электродвигателя, а значит и винтов торпеды;

Движение торпеды в воде;

Действие автомата глубины (рис. 2.10), прибора курса (рис. 2.11), креновыравнивающего прибора на установленной траектории движения торпеды;

Через 30…40 с после выстрела торпеды включаются НВ и активный канал ССН;

Поиск цели активным каналом ССН;

Получение отражённых сигналов и наведение на цель;

Периодическое включение пассивного канала для пеленгования шумов цели;

Получение надёжного контакта с целью пассивным каналом, отключение активного канала;

Наведение торпеды на цель пассивным каналом;

В случае потери контакта с целью ССН даёт команду на выполнение вторичного поиска и наведения;

При прохождении торпеды вблизи цели срабатывает НВ;

Взрыв торпеды.

2.4.3. Перспективы развития торпедного оружия

Необходимость совершенствования торпедного оружия вызывается постоянным улучшением тактических параметров кораблей. Так, например, глубина погружения атомных ПЛ достигла 900 м, а их скорость движения 40 узлов.

Можно выделить несколько путей, по которым должно осуществляться совершенствование торпедного оружия (рис. 2.21).

Улучшение тактических параметров торпед


Чтобы торпеда настигла цель, она должна иметь скорость, как минимум, в 1,5 раз больше, чем атакуемый объект (75…80 узлов), дальность хода – более 50 км, глубину погружения не менее 1000 м.

Очевидно, что перечисленные тактические параметры определяются техническими параметрами торпед. Следовательно, в данном случае должны рассматриваться технические решения.

Увеличение скорости торпеды может быть осуществлено за счёт:

Применения более эффективных химических источников питания двигателей электрических торпед (магний-хлор-серебряных, серебряно-алюминиевых, использующих в качестве электролита морскую воду).

Создания парогазовых ЭСУ замкнутого цикла для противолодочных торпед;

Уменьшения лобового сопротивления воды (полировка поверхности корпуса торпеды, сокращение числа ее выступающих частей, подбор соотношения длины к диаметру торпеды), поскольку V Т прямо пропорциональна сопротивлению воды.

Внедрения ракетных и гидрореактивных ЭСУ.

Увеличение дальности хода торпеды ДТ достигается теми же путями, что и увеличение её скорости V Т, ибо ДТ= V Т t, где t – время движения торпеды, определяемое количеством энергокомпонентов ЭСУ.

Увеличение глубины хода торпеды (или глубины выстрела) требует усиления корпуса торпеды. Для этого должны применяться более прочные материалы, например алюминиевые или титановые сплавы.

Повышение вероятности встречи торпеды с целью

Применением в системах управления волоконно-оптических про

водов. Это позволяет обеспечить двухстороннюю связь с торпе-

дой, а значит, увеличить объем информации о местоположении

цели, повысить помехоустойчивость канала связи с торпедой,

уменьшить диаметр провода;

Созданием и применением в ССН электроакустических преобра-

зователей, выполненных в виде антенных решеток, что позволит

улучшить процесс обнаружения и пеленгования торпедой цели;

Применением на борту торпеды высокоинтегральной электронной

вы числительной техники, обеспечивающей более эффективную

работу ССН;

Увеличением радиуса реагирования ССН повышением ее чувст-

вительности;

Снижением влияния средств противодействия путем использо -

вания в торпеде устройств, осуществляющих спектральный

анализ принимаемых сигналов, их классификацию и выявление

ложных целей;

Разработкой ССН на базе инфракрасной техники, не подвержен-

ной воздействию помех;

Снижением уровня собственных шумов торпеды путем совершен-

ствования двигателей (создание бесколлекторных электродвига-

телей переменного тока), механизмов передачи вращения и

винтов торпед.

Повышение вероятности поражения цели

Решение этой проблемы может быть достигнуто:

Подрывом торпеды вблизи наиболее уязвимой части (например,

под килем) цели, что обеспечивается совместной работой

ССН и ЭВМ;

Подрывом торпеды на таком расстоянии от цели, при котором на

блюдается максимальное воздействие ударной волны и расши

рение газового пузыря, возникающего при взрыве;

Созданием боевой части кумулятивного (направленного действия);

Расширением диапазона мощностей ядерной боевой части, что

связано как с объектом поражения, так и с собственным безопас -

ным радиусом. Так, заряд мощностью 0,01 кт должен применяться

на дистанции не менее 350 м, 0,1 кт – не менее 1100 м.

Повышение надежности торпед

Опыт эксплуатации и применения торпедного оружия показывает, что после длительного хранения некоторая часть торпед не способна выполнять возложенные на них функции. Это свидетельствует о необходимости повышения надежности торпед, что достигается:

Повышением уровня интеграции электронной аппаратуры торпе -

ды. Это обеспечивает повышение надежности электронных уст-

ройств в 5 – 6 раз, уменьшает занимаемые объемы, снижает

стоимость аппаратуры;

Созданием торпед модульной конструкции, что позволяет при мо-

дернизации заменять менее надежные узлы на более надежные;

Совершенствованием технологии изготовления приборов, узлов и

систем торпед.

Таблица 2.4

Наименование торпеды

Скорость,

Дальность

двигателя

Энергоноситель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Комбинированная ССН

Комбинированная ССН,

ССН по КС

Поршневой

Унитарный

Комбинированная ССН,

ССН по КС

Нет сведений

Зарубежные

«Барракуда»

Турбина

Окончание табл. 2.4

Некоторые из рассмотренных путей уже нашли свое отражение в ряде торпед, представленных в табл. 2.4.

3. ТАКТИЧЕСКИЕ СВОЙСТВА И ОСНОВЫ БОЕВОГО ПРИМЕНЕНИЯ ТОРПЕДНОГО ОРУЖИЯ

3.1. Тактические свойства торпедного оружия

Тактические свойства любого оружия – это совокупность качеств, характеризующих боевые возможности оружия.

Основными тактическими свойствами торпедного оружия являются:

1. Дальность хода торпеды.

2. Скорость ее хода.

3. Глубина хода или глубина выстрела торпеды.

4. Способность наносить повреждения наиболее уязвимой (подводной) части корабля. Опыт боевого применения показывает, что для уничтожения большого противолодочного корабля требуется 1 – 2 торпеды, крейсера – 3 – 4, авианосца – 5 – 7, подводной лодки – 1 – 2 торпеды.

5. Скрытность действия, что объясняется малой шумностью, бесследностью, большой глубиной хода.

6. Высокая эффективность, обеспечиваемая применением систем телеуправления, что значительно повышает вероятность поражения целей.

7. Возможность уничтожения целей, идущих с любой скоростью, а подводных лодок, идущих и на любой глубине.

8. Высокая готовность к боевому применению.

Однако наряду с положительными свойствами имеются и отрицательные:

1. Относительно большое время воздействия на противника. Так, например, даже при скорости 50 узлов торпеде требуется примерно 15 мин, чтобы достичь цель, находящуюся на расстоянии 23 км. За этот промежуток времени цель имеет возможность осуществить маневрирование, применить средства противодействия (боевые и технические), чтобы уклониться от торпеды.

2. Трудность уничтожения цели на малых и больших дистанциях. На малых – из-за возможности поражения стреляющего корабля, на больших – из-за ограниченности дальности хода торпед.

3.2. Организация и виды подготовки торпедного оружия

к стрельбе

Организация и виды подготовки торпедного оружия к стрельбе определяются «Правилами минной службы» (ПМС).

Подготовка к стрельбе подразделяется:

На предварительную;

Окончательную.

Предварительная подготовка начинается по сигналу: «Корабль к бою и походу приготовить». Заканчивается обязательным выполнением всех регламентированных действий.

Окончательная подготовка начинается с момента обнаружения цели и получения целеуказания. Заканчивается в момент занятия кораблём позиции залпа.

Основные действия, производимые при подготовке к стрельбе, приведены в таблице.

В зависимости от условий стрельбы окончательная подготовка может быть:

Сокращённой;

При малой окончательной подготовке для наведения торпеды учитываются только пеленг на цель и дистанция. Угол упреждения j не рассчитывается (j =0).

При сокращённой окончательной подготовке учитываются пеленг на цель, дистанция и сторона движения цели. При этом угол упреждения j устанавливается равным некоторой постоянной величине (j=const).

При полной окончательной подготовке учитываются координаты и параметры движения цели (КПДЦ). В этом случае определяется текущее значение угла упреждения (jТЕК).

3.3. Способы стрельбы торпедами и их краткая характеристика

Существует ряд способов стрельбы торпедами. Эти способы определяются теми техническими средствами, которыми оснащены торпеды.

При автономной системе управления стрельба возможна:

1. В настоящее место цели (НМЦ), когда угол упреждения j=0 (рис. 3.1, а).

2. В область вероятного местоположения цели (ОВМЦ), когда угол упреждения j=const (рис. 3.1, б).

3. В упреждённое место цели (УМЦ), когда j=jТЕК (рис. 3.1, в).



Во всех представленных случаях траектория движения торпеды является прямолинейной. Наибольшая вероятность встречи торпеды с целью достигается в третьем случае, однако этот способ стрельбы требует максимального времени на подготовку.

При телеуправлении, когда управление движения торпеды корректируется командами с корабля, траектория будет криволинейной. При этом возможно движение:

1) по траектории, обеспечивающей нахождение торпеды на линии торпеда – цель;

2) в упреждённую точку с корректировкой угла упреждения по

мере приближения торпеды к цели.


При самонаведении используется сочетание автономной системы управления с ССН или телеуправления с ССН. Следовательно, до начала реагирования ССН торпеда движется так же, как рассмотрено выше, а затем, используя:


Траекторию догонного типа, когда продолжение оси тор педы всё

время совпадает с направлением на цель (рис. 3.2, а).

Недостатком этого способа является то, что торпеда часть своего

пути проходит в кильватерной струе, что ухудшает условия рабо

ты ССН (кроме ССН по кильватерному следу).

2. Так называемую траекторию коллизионного типа (рис. 3.2, б), когда продольная ось торпеды всё время образует с направлением на цель постоянный угол b. Этот угол для конкретной ССН постоянен или может оптимизироваться бортовой ЭВМ торпеды.

Список литературы

Теоретические основы торпедного оружия/ , . М.: Воениздат, 1969.

Лобашинский. /ДОСААФ. М., 1986.

Забнев оружие. М.: Воениздат, 1984.

Сычёв оружие /ДОСААФ. М., 1984.

Чечот О. Скоростная торпеда 53-65: история создания // Морской сборник 1998, №5. с. 48-52.

Из истории развития и боевого применения торпедного оружия

1. Общие сведения о торпедном оружии …………………………………… 4

2. Устройство торпед …………………………………………………………… 13

3. Тактические свойства и основы боевого применения