Уход за телом

Сверхзвуковые крылатые ракеты. Самые лучшие и смертоносные баллистические и крылатые ракеты Маскировка под ПРО

Сверхзвуковые крылатые ракеты. Самые лучшие и смертоносные баллистические и крылатые ракеты Маскировка под ПРО

На протяжении двух последних десятилетий все относительно крупномасштабные военные конфликты с участием США и стран НАТО в качестве обязательного элемента включали массированное применение крылатых ракет (КР) морского и авиационного базирования.

Руководство США активно продвигает и постоянно совершенствует концепцию «бесконтактной» войны с применением высокоточного оружия (ВТО) дальнего действия. Эта идея предполагает, во-первых, отсутствие (или сокращение до минимума) людских потерь со стороны нападающего и, во-вторых, эффективное решение важнейшей задачи, характерной для начального этапа любого вооруженного конфликта, завоевание безусловного господства в воздухе и подавление системы ПВО противника.

Нанесение «бесконтактных» ударов подавляет моральный дух обороняющихся, создает ощущение беспомощности и неспособности борьбы с агрессором, угнетающе действует на высшие органы управления обороняющейся стороны и подчиненные войска.

Помимо «оперативно-тактических» результатов, достижимость которых американцы неоднократно демонстрировали в ходе антииракских кампаний, ударов по Афганистану, Югославии и др., накопление КР преследует и «стратегическую» цель. В печати все чаще обсуждается сценарий, в соответствии с которым предполагается одновременное уничтожение важнейших компонентов Стратегических ядерных сил (СЯС) Российской Федерации обычными боезарядами КР, преимущественно морского базирования, в ходе первого «обезоруживающего удара». После нанесения такого удара должны быть выведены из строя командные пункты, шахтные и подвижные пусковые установки РВСН, объекты ПВО, аэродромы, подводные лодки в базах, системы управления и связи и др.

Достижение требуемого эффекта, по мнению американского военного руководства, может быть обеспечено благодаря:
— сокращению боевого состава СЯС РФ в соответствии с двухсторонними соглашениями;
— увеличению числа применяемых в первом ударе средств ВТО (в первую очередь — КР);
— созданию эффективной противоракетной обороны Европы и США, способной «добить» не уничтоженные в ходе обезоруживающего удара российские средства СЯС.

Для любого непредвзятого исследователя очевидно, что правительство США (независимо от фамилии и цвета кожи президента) упорно и настойчиво добивается такого положения, когда Россия будет, подобно Ливии и Сирии, загнана в угол, и ее руководству придется сделать последний выбор: согласиться на полную и безоговорочную капитуляцию в части принятия важнейших внешнеполитических решений или все же опробовать на себе очередной вариант «решительной силы» или «несокрушимой свободы».

В описанной ситуации для России необходимы не менее энергичные и, самое главное, эффективные мероприятия, способные если не предотвратить, то хотя бы отодвинуть «день Д» (может быть, ситуация изменится, остроту угрозы удастся уменьшить, появятся новые аргументы против осуществления «силового варианта», высадятся марсиане, американские «верхи» станут более вменяемыми — в порядке уменьшения вероятности).

Располагая огромными ресурсами и запасами постоянно совершенствуемых образцов ВТО, военно -политическое руководство США справедливо считает, что отражение массированного удара КР является крайне дорогостоящей и сложной задачей, которая сегодня не по плечу ни одному из потенциальных противников Соединенных Штатов.

Сегодня возможности РФ по отражению такого удара явно недостаточны. Высокая стоимость современных систем ПВО, будь то зенитные ракетные системы (ЗРС) или пилотируемые авиационные комплексы (ПАК) перехвата, не позволяет развернуть их в необходимом количестве с учетом огромной протяженности границ РФ и неопределенности с направлениями, с которых могут быть нанесены удары с применением КР.

Между тем, обладая несомненными достоинствами, КР не лишены существенных недостатков:

— во-первых , на современных образцах «крылаток» отсутствуют средства обнаружения факта атаки КР со стороны истребителя;

— во-вторых , на относительно протяженных участках маршрута крылатые ракеты летят с постоянным курсом, скоростью и высотой, что облегчает осуществление перехвата;

— в-третьих , как правило, КР летят к цели компактной группой, что упрощает нападающему планирование нанесения удара и теоретически способствует повышению живучести ракет; однако последнее выполняется лишь при условии насыщения целевых каналов средств ПВО, а в противном случае указанная тактика играет негативную роль, облегчая организацию перехвата;

— в-четвертых , скорость полета современных крылатых ракет пока еще дозвуковая, порядка 800…900 км/ч, поэтому для перехвата КР обычно имеется существенный ресурс времени (десятки минут).

Проведенный анализ свидетельствует, что для борьбы с крылатыми ракетами необходима система, способная :
— перехватывать большое число малоразмерных дозвуковых неманеврирующих воздушных целей на предельно малой высоте в ограниченном районе за ограниченное время;
— прикрывать одним элементом этой подсистемы участок (рубеж) шириной много большей, чем у существующих ЗРС на малых высотах (ориентировочно 500…1000 км);
— обладать высокой вероятностью выполнения боевой задачи в любых метеоусловиях днем и ночью;
— обеспечивать существенно более высокое значение комплексного критерия «эффективность/стоимость» при перехвате КР по сравнению с классическими ЗРС и ПАК перехвата.

Эта система должна сопрягаться с другими системами и средствами ПВО/ПРО в части управления, разведки воздушного противника, связи и т.п.

Опыт борьбы с КР в военных конфликтах

Масштабы применения КР в вооруженных конфликтах характеризуются следующими показателями. В период проведения операции «Буря в пустыне» в 1991 г. с надводных кораблей и подводных лодок ВМС США, развернутых на позициях в Средиземном и Красном морях, а также в Персидском заливе, было выполнено 297 пусков КРМБ типа «Томахок».

В 1998 г. в ходе операции «Лис пустыни» контингент американских вооруженных сил применил по Ираку более 370 крылатых ракет морского и авиационного базирования.

В 1999 г. в ходе агрессии НАТО против Югославии в рамках операции «Решительная сила» крылатые ракеты были использованы при нанесении трех массированных авиационно-ракетных ударов, состоявшихся на протяжении первых двух суток конфликта. Затем США и их союзники перешли к систематическим боевым действиям, в ходе которых также применялись крылатые ракеты. Всего в период активных действий было выполнено более 700 пусков ракет морского и воздушного базирования.

В процессе систематических боевых действий в Афганистане вооруженные силы США применили более 600 крылатых ракет, а в ходе операции «Свобода Ираку» в 2003 г. — не менее 800 КР.

В открытой печати, как правило, результаты применения крылатых ракет приукрашиваются, создавая впечатление о «неотвратимости» ударов и об их высочайшей точности. Так, по телевидению неоднократно показывался ролик, в котором демонстрировался случай прямого попадания крылатой ракеты в окно здания цели и т.п. Однако ни об условиях, в которых производился этот эксперимент, ни о дате и месте его проведения никаких данных не приводилось.

Однако существуют и другие оценки, в которых крылатые ракеты характеризуются заметно менее впечатляющей эффективностью. Речь идет, в частности, о докладе комиссии Конгресса США и о материалах, опубликованных офицером иракской армии, в которых доля пораженных в 1991 г. средствами иракской ПВО американских крылатых ракет оценивается приблизительно в 50 %. Несколько меньшими, но также существенными, считаются потери крылатых ракет от югославских средств ПВО в 1999 г.

В обоих случаях крылатые ракеты сбивались преимущественно переносными ЗРК типа «Стрела» и «Игла». Важнейшим условием перехвата было сосредоточение расчетов ПЗРК на ракетоопасных направлениях и своевременное предупреждение о приближении крылатых ракет. Попытки применить «более серьезные» ЗРК для борьбы с крылатыми ракетами были затруднены, так как включение РЛС обнаружения целей из состава ЗРК практически немедленно вызывало нанесение ударов по ним с применением противорадиолокационных авиационных средств поражения.

В этих условиях иракская армия, к примеру, вернулась к практике организации постов воздушного наблюдения, обнаруживавших крылатые ракеты визуально и сообщавших об их появлении по телефону. В период ведения боев в Югославии для противодействия крылатым ракетам использовались высокомобильные ЗРК «Оса-АК», включавшие РЛС на непродолжительное время с немедленной сменой позиции вслед за этим.

Итак, одной из важнейших задач является исключение возможности «тотального» ослепления системы ПВО/ПРО с потерей способности адекватного освещения воздушной обстановки.

Вторая задача — быстрая концентрация активных средств на направлениях ударов. Современные ЗРС для решения этих задач не вполне подходят.

Американцы тоже боятся крылатых ракет

Задолго до 11 сентября 2001 г., когда на объекты Соединенных Штатов обрушились самолеты-камикадзе с пассажирами на борту, американские аналитики выявили другую гипотетическую угрозу стране, которую, по их мнению, могли создать «страны-изгои» и даже отдельные террористические группы.

Представьте себе следующий сценарий. В двухстах-трехстах километрах от побережья державы, где проживает «хэппи нейшн», появляется невзрачный сухогруз с контейнерами на верхней палубе. Ранним утром, чтобы использовать дымку, затрудняющую визуальное обнаружение воздушных целей, из нескольких контейнеров с борта этой посудины внезапно стартуют крылатые ракеты, конечно же, советского производства или их копии, «сварганенные» умельцами из неназванной страны. Далее контейнеры сбрасываются за борт и затапливаются, а судно-ракетоносец прикидывается «ни в чем не повинным торговцем», оказавшимся здесь случайно.

Крылатые ракеты летят низко, их старт обнаружить непросто. И начинены их боевые части не обычным ВВ, не игрушечными медвежатами с призывами к демократии в лапках, а, естественно, мощнейшими отравляющими веществами или, на худой конец, спорами сибирской язвы. Спустя десять-пятнадцать минут ракеты появляются над ничего не подозревающим прибрежным городом… Что и говорить, картина нарисована рукой мастера, насмотревшегося американских фильмов ужасов.

Но для того, чтобы убедить американский конгресс раскошелиться, нужна «прямая и явная угроза». Главная проблема: для перехвата таких ракет практически не остается времени на приведение в готовность активных средств перехвата — ЗУР или пилотируемых истребителей, ведь наземная РЛС сможет «увидеть» несущуюся на десятиметровой высоте крылатую ракету на расстоянии, не превышающем нескольких десятков километров.

В1998 г. на проработку средства защиты от кошмара крылатых ракет, прилетающих «ниоткуда», в США были впервые выделены деньги в рамках программы Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS). В октябре2005 г. были закончены научно-исследовательские и экспериментальные работы, связанные с проверкой заложенных идей на реализуемость, и фирма Raytheon получила отмашку на изготовление опытных образцов системы JLENS. Теперь речь пошла уже не о каких-то несчастных десятках миллионов долларов, а о солидной сумме — 1,4 млрд. долларов.

В2009 г. были продемонстрированы элементы системы: гелиевый аэростат 71М с наземной станцией для подъема/опускания и обслуживания, а фирма Science Applications International Corp. из Санкт-Петербурга получила заказ на проектирование и изготовление антенны для радиолокатора, являющегося полезным грузом аэростата.

Еще через год семидесятиметровый аэростат впервые поднялся в небо с РЛС на борту, а в 2011 г. систему проверили почти по полной программе: сначала сымитировали электронные цели, затем запустили низколетящий самолет, после чего пришел черед беспилотника с очень маленькой ЭПР.

Собственно, антенн под аэростатом имеется две: одна для обнаружения малоразмерных целей на относительно большой дальности, а другая для точного целеуказания на меньшей дальности. Питание к антеннам подается с земли, отраженный сигнал «спускают» по оптико -волоконному кабелю. Работоспособность системы проверялась вплоть до высоты4500 м. В составе наземной станции имеется лебедка, обеспечивающая подъем аэростата на нужную высоту, источник питания, а также кабина управления с рабочими местами диспетчера, метеоролога и оператора управления аэростатом.

Сообщается, что аппаратура системы JLENS сопрягается с корабельной ЗРС «Иджис», наземными ЗРК «Патриот», а также с комплексами SLAMRAAM (новый ЗРК самообороны, в котором в качестве активных средств применяются конвертированные УР AIM-120, прежде позиционировавшиеся как ракеты «воздух-воздух»).

Однако весной 2012 г. у программы JLENS начались трудности: Пентагон в рамках запланированного сокращения бюджета заявил об отказе от развертывания первой партии из 12 серийных станций с аэростатами 71М, оставив только две уже изготовленные станции для доводки РЛС, устранения выявленных недостатков в аппаратуре и программном обеспечении.

30 апреля 2012 г. в ходе практических пусков ЗУР на учебноиспытательном полигоне в штате Юта с использованием целеуказания от системы JLENS был сбит беспилотный самолет, применявший средства РЭП. Представитель фирмы Raytheon отметил: «Дело не только в том, что БЛА был перехвачен, а еще и в том, что удалось выполнить все требования технического задания по обеспечению надежного взаимодействия системы JLENS и ЗРК «Патриот». Фирма надеется на возобновление интереса военных к системе JLENS, ведь ранее планировалось, что Пентагон закупит сотни комплектов в период с 2012 по 2022 г.

Симптоматичным можно считать тот факт, что даже самая богатая в мире страна, судя по всему, все же считает неприемлемой для себя цену, которую пришлось бы заплатить для постройки «великой американской противоракетной стены» на основе использования традиционных средств перехвата КР, пусть даже во взаимодействии с новейшими системами обнаружения низколетящих воздушных целей.

Предложения по облику и организации противодействия крылатым ракетам с помощью беспилотных истребителей

Проведенный анализ свидетельствует о том, что систему борьбы с крылатыми ракетами целесообразно строить на основе использования относительно мобильных подразделений, вооруженных управляемыми ракетами с тепловыми ГСН, которые должны быть своевременно сосредоточены на угрожаемом направлении. В составе таких подразделений не должно быть стационарных или низкомобильных наземных РЛС, которые немедленно становятся объектами ударов противника с применением противорадиолокационных ракет.

Наземные средства ПВО с ракетами «земля-воздух» с тепловыми ГСН характеризуются небольшим курсовым параметром, составляющим единицы километров. Для надежного прикрытия рубежа протяженностью 500 км потребуются десятки комплексов.

Значительная часть сил и средств наземной ПВО в случае пролета крылатых ракет противника по одному-двум маршрутам окажутся «не у дел». Возникнут проблемы с размещением позиций, организацией своевременного предупреждения и целераспределения, возможностью «насыщения» огневых возможностей средств ПВО на ограниченном участке. Кроме того, мобильность такой системы обеспечить довольно затруднительно.

Альтернативой может стать применение относительно малоразмерных беспилотных истребителей-перехватчиков, вооруженных управляемыми ракетами малой дальности с тепловыми ГСН.

Подразделение таких летательных аппаратов может базироваться на одном аэродроме (аэродромный взлет и посадка) или в нескольких пунктах (безаэродромный старт, аэродромная посадка).

Главным достоинством авиационных беспилотных средств перехвата крылатых ракет является возможность быстрой концентрации усилий в ограниченном коридоре пролета ракет противника. Целесообразность применения БИКР против крылатых ракет обусловлена также тем, что «интеллект» такого истребителя, реализуемый в настоящее время на основе существующих датчиков информации и вычислителей, достаточен для поражения целей, которые не оказывают активного противодействия (за исключением системы встречного подрыва у крылатых ракет с ядерной БЧ).

Малоразмерный беспилотный истребитель крылатых ракет (БИКР) должен нести бортовую РЛС с дальностью обнаружения воздушной цели класса «крылатая ракета» на фоне земли порядка100 км(класса «Ирбис»), несколько УР «воздух -воздух» (класса Р-60, Р-73 или ПЗРК «Игла»), а также, возможно, авиационную пушку.

Относительно небольшие масса и размерность БИКР должны способствовать снижению стоимости аппаратов по сравнению с пилотируемыми истребителями-перехватчиками, а также уменьшению суммарного расхода топлива, что немаловажно с учетом необходимости массового использования БИКР (максимальную потребную тягу двигателя можно оценить равной 2,5…3 тс, т.е. примерно как у серийного АИ-222-25). Для эффективной борьбы с крылатыми ракетами максимальная скорость полета БИКР должна быть околозвуковой или невысокой сверхзвуковой, а потолок — относительно небольшим, не более10 км.

Управление БИКР на всех этапах полета должно обеспечиваться «электронным пилотом», функции которого должны быть существенно расширены по сравнению с типовыми системами автоматического управления летательными аппаратами. Помимо автономного управления целесообразно предусмотреть возможность дистанционного управления БИКР и его системами, например, на этапах взлета и посадки, а также, возможно, боевого применения вооружения или принятия решения на применение оружия.

Процесс боевого применения подразделения БИКР можно кратко описать следующим образом. После обнаружения средствами старшего начальника (низко мобильную наземную обзорную РЛС вводить в состав подразделения нельзя!) факта приближения крылатых ракет противника в воздух поднимают несколько БИКР с таким расчетом, чтобы после выхода в расчетные районы зоны обнаружения бортовых РЛС беспилотных перехватчиков полностью перекрывали по ширине весь прикрываемый участок.

Первоначально район маневрирования конкретного БИКР задается перед вылетом в полетном задании. При необходимости район может быть уточнен в полете посредством передачи соответствующих данных по защищенной радиолинии. В случае отсутствия связи с наземным КП (подавления радиолинии) один из БИКР приобретает свойства «командного аппарата» с определенными полномочиями.

В составе «электронного пилота» БИКР необходимо предусмотреть блок анализа воздушной обстановки, который должен обеспечить массирование сил БИКР, находящихся в воздухе, на направлении подхода тактической группы крылатых ракет противника, а также организовать вызов дополнительных дежурных сил БИКР в случае, если все крылатые ракеты не удается перехватить «активными» БИКР. Таким образом, дежурящие в воздухе БИКР в известной мере сыграют роль своеобразных «обзорных РЛС», практически неуязвимых для противорадиолокационных УР противника. Они же могут бороться с потоками крылатых ракет относительно невысокой плотности.

В случае отвлечения дежурящих в воздухе БИКР на одно направление с аэродрома должны быть немедленно подняты дополнительные аппараты, которые должны исключить образование неприкрытых зон на участке ответственности подразделения.

В угрожаемый период возможна организация непрерывного боевого дежурства нескольких БИКР. В случае возникновения необходимости переброски подразделения на новое направление БИКР могут перелететь на новый аэродром «своим ходом». Для обеспечения посадки предварительно на этот аэродром должна быть транспортным самолетом доставлена кабина управления и расчет, обеспечивающий выполнение необходимых операций (возможно, потребуется не один «транспортник», но все же проблема переброски на большое расстояние потенциально решается проще, чем в случае с ЗРС, и за гораздо более короткое время).

На этапе перелета на новый аэродром БИКР должен управляться «электронным пилотом». Очевидно, что помимо «боевого» минимума оборудования для обеспечения безопасности полетов в мирное время автоматика БИКР должна включать подсистему исключения столкновений в воздухе с другими летательными аппаратами.

Только летные эксперименты смогут подтвердить или опровергнуть возможность уничтожения КР или иного беспилотного летательного аппарата противника огнем из бортовой пушки БИКР.

Если вероятность уничтожения КР пушечным огнем окажется достаточно высокой, то по критерию «эффективность — стоимость» такой способ уничтожения крылатых ракет противника окажется вне всякой конкуренции.

Центральной проблемой при создании БИКР является не столько разработка собственно летательного аппарата с соответствующими летными данными, оборудованием и вооружением, сколько создание эффективного искусственного интеллекта (ИИ), обеспечивающего эффективное применение подразделений БИКР.

Представляется, что задачи ИИ в данном случае могут быть разделены на три группы :
— группа задач, обеспечивающая рациональное управление одиночным БИКР на всех этапах полета;
— группа задач, обеспечивающая рациональное управление группой БИКР, которая перекрывает установленный рубеж воздушного пространства;
— группа задач, обеспечивающая рациональное управление подразделением БИКР на земле и в воздухе с учетом необходимости периодической смены летательных аппаратов, наращивания сил с учетом масштабов налета противника, взаимодействия с разведывательными и активными средствами старшего начальника.

Проблема, в определенной мере, состоит в том, что разработка ИИ для БИКР не является профильной ни для создателей собственно летательных аппаратов, ни для разработчиков бортовых САУ или РЛС. Без совершенного ИИ беспилотный истребитель превращается в неэффективную дорогостоящую игрушку, способную дискредитировать идею. Создание же БИКР с достаточно развитым ИИ может стать необходимым шагом на пути к многофункциональному беспилотному истребителю, способному бороться не только с беспилотными, но и пилотируемыми летательными аппаратами противника.

/Александр Медведь, доцент МФПУ «Синергия», к.т.н., engine.aviaport.ru /


Введение

1.Предварительные изыскания

1.1 Анализ прототипов

2 Современные требования к проектированию КР

2.1 Технические требования

2.2 Эксплуатационные требования

2.3 Тактические требования

3 Выбор аэродинамической схемы ЛА

3.1 Суммарная оценка снарядов различных схем

3.2 Выводы

4 Выбор геометрических параметров ЛА

5 Обоснование выбора типа старта

6 Выбор двигательной установки

7 Выбор материалов конструкции

8 Выбор способа управления

9 Выбор типа СУ и наведения ракеты на цель

10 Выбор типа расчетной траектории

11 Обоснование типа рулевого привода

12 Выбор типа БЧ

13 Предварительная компоновка ракеты

13.1 Схема электропитания

13.2 Носовая часть ракеты

13.3 Отсек БЧ

13.4 Баковый отсек

13.5 Отсек бортового оборудования

13.6 Отсек ДУ

Общее проектирование

1 Основные функции САПР ЛА

2 Расчет параметров траектории и облика ЛА в программе САПР 602

2.1 Задание на генерацию

2.2 Исходные данные

2.3 Программа

2.4 Результаты расчета

2.5 Расчет стартовой массы ЛА

2.6 Графики

Определение нагрузок, действующих на ЛА

1 Выбор расчетного режима

2 Исходные данные

2.1 Головная часть ракеты

2.2 Центральная часть ракеты

2.3 Несущие поверхности ракеты (крылья)

2.4 Органы управления ракеты (рули)

3 Координата центра давления ракеты

4 Определение силы лобового сопротивления ЛА

5 Определение изгибающих моментов, перерезывающих сил на корпус

6 Продольные нагрузки

Устойчивость и управляемость

4.1 Общая методика расчета устойчивости и балансировки

2 Определение потребной аэродинамической силы управления

5. Спецчасть и агрегат

1 Анализ механизмов раскладки крыла

5.1.1 Механизм раскладки крыла №1

1.2 Механизм раскладки крыла №2

1.3 Механизм раскладки крыла №3

1.4 Механизм раскладки крыла №4

1.5 Механизм раскладки крыла №5

5.2 Цельноповоротное крыло с ВППОКр (винтовой привод поворота и опускания крыла)

2.1 Расчет геометрических параметров ВППОКр

2.2 Расчет нагрузок на крыло и ВППОКр при раскладке крыла

2.3 Динамический расчет нагрузок на крыло

2.4 Расчет элементов ВППОКр

2.4.1 Срез и изгиб пальцев винтового преобразователя

2.4.2 Кручение боковины винтовых цилиндров

Технологическая часть

1 Обоснование схемы членения ЛА

1.1 Технологические характеристики стыков

1.2 Выбор метода взаимозаменяемости по стыкам

1.3 Технологическая характеристика и выбор материалов для изготовления ЛА

2 Технологический процесс сварки

3 Требования к общей сборки изделия

4 Директивные указания на сборку

5 Этапы сборки

Охрана труда

7.1 Общие требования к охране труда

2 Требования к охране труда при проектировании ЛА

7.2.1 Допустимый уровень шума

2.2 Требования к параметрам микроклимата помещения

2.3 Эргономические требования

3 Расчет числа ламп в помещении

Экономическая часть

1 Методика расчета

1.1 Затраты на ОКР

1.2 Затраты на НИР

1.3 Отпускная цена ракеты

1.4 Отпускная цена двигателя

1.5 Затраты на топливо

1.6 Затраты на эксплуатацию

1.7 Расчет числа ЛА, необходимого для поражения цели

8.2 Исходные данные

3 Результаты расчета

9. Список используемой литературы

Введение


Процесс создания современных КР является сложнейшей научно-технической задачей, которая решается совместно рядом научно-исследовательских, проектно-конструкторских и производственных коллективов. Можно выделить следующие основные этапы формирования КР: тактико-техническое задание, технические предложения, эскизное проектирование, рабочий проект, экспериментальная отработка, стендовые и натуральные испытания.

Работы по созданию современных образцов КР ведутся по следующим направлениям:

·увеличению дальности и скорости полёта до сверхзвуковой;

·использованию для наведения ракет комбинированных многоканальных систем обнаружения и самонаведения;

·снижению заметности ракет за счёт применения технологии «стелс»;

·повышению скрытности ракет путём уменьшения высоты полёта до предельных границ и усложнения траектории полёта на её конечном участке;

·оснащению бортовой аппаратуры ракет системой спутниковой навигации, которая определяет место нахождения ракеты с точностью до 10…..20 м;

·интегрированию ракет различного предназначения в единую ракетную систему морского, воздушного и наземного базирования.

Реализация перечисленных направлений достигается главным образом за счёт применения современных высоких технологий.

Технологический прорыв в авиастроении и ракетостроении, микроэлектроники и вычислительной техники, в разработке бортовых автоматических систем управления и искусственного интеллекта, двигательных установок и топлив, средств радиоэлектронной защиты и т.д. создал реальные разработки нового поколения КР и их комплексов. Стало возможным значительное увеличение дальности полёта как дозвуковых, так и сверхзвуковых КР, повышение избирательности и помехозащищённости бортовых систем автоматического управления с одновременным уменьшением (более чем в два раза) массогабаритных характеристик.

Крылатые ракеты подразделяются на две группы:

·наземного базирования;

·морского базирования.

К этой группе относятся ракеты стратегического и оперативно-тактического назначения с дальностью полёта от нескольких сот до нескольких тысяч километров, которые в отличие от баллистических ракет летят к цели в плотных слоях атмосферы и имеют для этого аэродинамические поверхности, создающие подъёмную силу. Такие ракеты предназначены для поражения важных стратегических целей (крупных административных и промышленных центров, аэродромов и стартовых позиций БР, военно-морских баз и портов, кораблей, крупных железнодорожных узлов и станций и т.п.).

Крылатые ракеты, способные запускаться с подводных лодок, надводных кораблей, наземных комплексов, самолётов, обеспечивают морским, наземным и воздушным силам исключительную гибкость.

Их основными преимуществами по сравнению с БР, являются:

·почти полная неуязвимость при внезапном ракетно-ядерном нападении противника благодаря мобильности базирования, тогда как места расположения пусковых шахт с БР часто заранее известны противнику;

·снижение по сравнению с БР затрат на выполнение боевой операции по поражению цели с заданной вероятностью;

·принципиальная возможность создания для КР усовершенствованной системы наведения, функционирующей автономно или использующей спутниковую навигационную систему. Эта система может обеспечить 100%-ную вероятность поражения цели, т.е. промах, близкий к нулю, что позволит сократить необходимое число ракет, а следовательно, и эксплуатационные затраты;

·возможность создания системы оружия, которая сможет решать как стратегические, так и тактические задачи;

·перспектива создания крылатых стратегических ракет нового поколения, имеющих ещё большую дальность, сверхзвуковые и гиперзвуковые скорости, допускающих перенацеливание в полёте.

На стратегических крылатых ракетах применяют, как правило, ядерные БЧ. На тактических вариантах этих ракет устанавливаются обычные БЧ. Например, на противокорабельных ракетах могут быть установлены БЧ проникающего, фугасного или фугасно-кумулятивного типа.

Система управления крылатых ракет существенно зависит от дальности полёта, траектории ракеты и радиолокационного контраста целей. Дальние ракеты обычно имеют комбинированные системы управления, например автономную (инерциальную, астроинерциальную) плюс самонаведение на конечном участке траектории. Пуск с наземной установки, подводной лодки, корабля требует применения ракетного ускорителя, который целесообразно отделять после выгорания топлива, поэтому крылатые ракеты наземного и морского базирования делаются двухступенчатыми. При пуске с самолёта-носителя ускоритель не требуется, так как имеется достаточная начальная скорость.В качестве ускорителя обычно применяют РДТТ. Выбор маршевого двигателя определяется требованиями малого удельного расхода топлива и большого времени полёта (десятки минут или даже несколько часов). Для ракет, скорость полёта которых сравнительно невелика (М<2), целесообразно применять ТРД как наиболее экономичные. Для дозвуковых скоростей () используют ТРДД малых тяг (до 3000 Н). При М>2 удельные расходы топлива ТРД и ПВРД становятся соизмеримыми и основную роль при выборе двигателя играют другие факторы: простота конструкции, малая масса и стоимость. В качестве топлива маршевых двигателей используются углеводородные топлива.

1. ПРЕДВАРИТЕЛЬНЫЕ ИЗЫСКАНИЯ


1 АНАЛИЗ ПРОТОТИПОВ

Страна: США

Тип: Тактическая ракета большой дальности

В США в рамках программы JASSM (Joint Air to Surface Standoff Missile) корпорация Lockheed-Martin продолжает полномасштабную разработку управляемой ракеты (УР) AGM-158 класса "воздух - земля" большой дальности, которой планируется вооружать самолеты стратегической и тактической авиации ВВС и авиации ВМС США. Ракета предназначена для поражения как стационарных, так и мобильных целей (комплексов ПВО, бункеров, больших зданий, легкобронированных и небольших сильно защищенных объектов, мостов) в простых и сложных метеоусловиях, ночью и днем.

Ракета построена по нормальной аэродинамической схеме: низкоплан со складывающимся элевонами. В ее конструкции широко используются современные композиционные материалы на основе углеродных волокон. В качестве силовой установки применяется турбореактивный двигатель J402 с усовершенствованными компрессором и топливной системой. В составе комбинированной системы наведения наряду с тепловизионной ГСН (работает на конечном участке наведения) используется инерциальная система управления с коррекцией по данным КРНС NAVSTAR и программно-аппаратные средства автономного распознавания целей. В зависимости от типа цели будет применяться кассетная или унитарная боевая часть (БЧ). В настоящее время на ракете устанавливается бетонобойная БЧ J-1000. Для снаряжения кассетной боевой части, возможно, будут использованы боеприпасы BLU-97 GЕМ (комбинированного действия).

При пуске ракеты на большую дальность возникает проблема передачи информации о текущем местоположении ракеты. Эта информация необходима, в частности, для определения факта попадания УР в цель. Существующая конструкция включает передатчик (мощностью 25 Вт) типа BIA (Bomb Impact Assessment), обеспечивающий передачу данных на стратегический разведывательный самолет RC-135V и W со скоростью до 9 600 бит/с в диапазоне частот 391,7-398,3 МГц. Проблема, вероятнее всего, будет решена путем передачи данных с ракеты на самолет-ретранслятор через спутник.В ходе проходящих в настоящее время летных испытаний опытных образцов ракеты проверяется работоспособность двигателя и системы наведения. На основе полученных результатов были модернизированы система энергоснабжения, механизм раскрытия крыла и программное обеспечение. Для снижения аэродинамического сопротивления и улучшения маневренных характеристик предполагается также изменить форму управляющих поверхностей и местоположение приемника воздушного давления.

В качестве носителей данной ракеты будут использоваться стратегические бомбардировщики В-52Н (12 ракет), В-1В (24), В-2 (16), F-15E (три), а также тактические истребители F-16 С и D (две), F/A-18 (две), F-117 (две). В соответствии с текущими планами предусматривается закупить 4 000 ракет для ВВС и 700 для ВМС США при стоимости серийного образца около 400 тыс. долларов. Поступление новой УР на вооружение ожидается в 2002 - 2003 годах.

Вес, кг 1050

Вес БЧ, кг 450

Размах, м 2,70

Длина, м 4,26

Высота, м 0,45

Ширина, м 0,55

Дальность, км 350

Точность (КВО), м 3

Двигатель ТТРД

Тяга, кН 4.2

Самолет-носитель В-52Н, В-1В, В-2, F-15E, F-16 С и D, F/A-18, F-117

стратегическая крылатая ракета

<#"justify">ОписаниеРазработчикМКБ «Радуга»ОбозначениеХ-101Обозначение NATOAS-?Год1999Тип ГСНоптоэлектронной система коррекции + ТВГеометрические и массовые характеристикиДлина, мЭПР, м20,01Стартовый вес, кг2200-2400Тип боеголовкиобычнаяМасса БЧ, кг400Силовая установкаДвигательДТРДЛетные данныеСкорость, м/сКрейсерская190-200максимальная250-270КВО, м12-20Дальность пуска, км5000-5500ACM

Страна: США

Тип: Высокоточная стратегическая крылатая ракета

Полномасштабные работы по программе ACM (Advanced Cruise Missile) были начаты в 1983. Целью программы было создание стратегической высокоточной системы авиационного оружия, позволяющей уничтожать цели противника без захода самолета-носителя в зону ПВО противника. Первая ракета была поставлена в 1987. Контракты производство на ACM были заключены с компаниями General Dynamics и McDonnel-Douglas.

В конструкции ракеты, получившей обозначение AGM-129A, широко применена технология steath. Ракета имеет форму, наименее заметную для большинства РЛС, и специальное покрытие. Применение крыла обратной стреловидности также снижает радиолокационную заметность ракеты. Ракета оснащена ядерной боевой частью WA80 весом 200 кг. Максимальная дальность стрельбы 3000 км. Круговое вероятное отклонение менее 30 м. Система наведения инерциальная, в сочетании с корреляционной по рельефу местности. В ИНС используются лазерные гироскопы.

В 1993-1994 гг. ракета AGM-129A поступила на вооружение американских стратегических бомбардировщиков B-52H (12 КР), B-1B и B-2. Вместо ранее планировавшихся 1460 ракет, выпуск был ограничен 460.


Разработчик Длина, м Диаметр фюзеляжа, м Размах крыла, м Боевая часть Стартовый вес, кг Вес БЧ, кг Число двигателей Двигатель Тяга двигателя, кгс (кН) Макс. скорость на высоте, М Максимальная дальность, км КВО, мGeneral Dynamics 6,35 0,74= 3,12 W-80-1 (ядерная) 1250 200 1 ДТРД Williams International F112 332 <1 более 2400 менее 30C/D CALCM

Страна: США

Тип: Крылатая ракета

Крылатая ракета AGM-86 ALCM (Air-Launched Cruise Missile) является основным оружием большой дальности бомбардировщиков B-52H. С заменой ядерных боевых частей на обычные, AGM-86 остается очень важным оружием в в ближайшем обозримом будущем.

Началом создания ALCM было положено в январе 1968 г., когда ВВС США составили требования к ложной цели SCAD (Subsonic Cruise Aircraft Decoy). Носителями SCAD должны были стать бомбардировщики В-52 и В-1А. Данная ЛЦ должна была имитировать бомбардировщики на экранах РЛС для обеспечения прорыва вражеской ПВО. По существу, SCAD являлась модификацией ЛЦ ADM-20 Quail. В стадии ранней концепции стало ясно, что SCAD может быть снабжена небольшой ядерной БЧ, и название ЛЦ было изменено на Subsonic Cruise Armed Decoy. Полномасштабные работы были начаты в июне 1970 г. и ЛЦ было присвоено обозначение AGM-86A. В начале 70-ых ожидаемая стоимость радиоэлектронных систем SCAD достигла слишком больших значений. В июне 1973 г. разработка была прервана после того как стало ясно, что экономически более выгодно создать крылатую ракету без аппаратуры РЭБ.

Сразу после отмены программы SCAD, ВВС США начали новую программу крылатой ракеты большой дальности с ядерной боевой частью, используя наработки по SCAD. В сентябре 1974 г. фирма Боинг получила контракт на разработку новой ракеты, за которой было оставлено обозначение AGM-86A, т.к. фактически новая ALCM была той же SCAD, но с боевой частью. Длина AGM-86A равна 4,3 м., что позволяло использовать ее с тех же пусковых установок, что и AGM-69 SRAM. Первый испытательный запуск ракеты состоялся 5 марта 1976 г. на ракетном полигоне White Sands в штате Нью Мехико. В 9 сентября того же года был успешно произведен первый управляемый запуск, полет ракеты продлился 30 минут. ALCM оснастили инерциальной навигационной системой, работающей в комплексе с корреляционной системой следования контуру рельефа местности TERCOM (Terrain Contour Matching).

В ходе создания AGM-86A ВВС выдали требования к ракете увеличенной дальности (до 2400 км). Было два пути, по которым могли пойти разработчики для достижения такой дальности. Одним из них было использование внешних топливных баков, а другим - увеличение размеров ракеты (данный вариант получил обозначение ERV - extended range vehicle). Вариант ERV имел один недостаток - существующие пусковые установки ракет AGM-69 не могли быть использованы, и длинная ракеты не поместилась бы в бомбоотсеке бомбардировщика B-1A. ВВС приняли решение сначала принять AGM-86A на вооружение, а за тем заняться или установкой дополнительных внешних баков или вариантом ERV. В январе 1977 г., должно было начаться полномасштабное серийное производство AGM-86A, но этому не суждено было случиться, т.к. в 1977 г. наметилось решительное изменение в направлении программы ALCM. 30 июня 1977 г. президент Картер объявил о прекращении производства бомбардировщиков В-1А в пользу развития программы ALCM.

В рамках программы JCMP (Joint Cruise Missile Project - проект единой крылатой ракеты) ВВС и ВМФ направили свои усилия по созданию крылатых ракет на использование единой технологической базы. В то же время флот только что объявил ракету BGM-109 Tomahawk победителем в конкурсе по программе SLCM. Одним из последствий программы JCMP стало использование одинаковых двигателей F107 фирмы Williams и системы наведения TERCOM. Другим последствием стал отказ от AGM-86A малой дальности вместе с директивой выбора варианта ALCM большой дальности исходя из результатов конкурса между ракетами ERV ALCM (теперь AGM-86B) и авиационным вариантом AGM-109 Tomahawk. Первый запуск AGM-86B был произведен в 1979 г., а в марте 1980 г. AGM-86B была объявлена победителем. Через некоторое время было развернуто серийное производство, и в августе 1981 ракеты ALCM были приняты на вооружение бомбардировщиков B-52G/H.

Ракета AGM-86B оснащена одним турбореактивным двигателем F107-WR-100 или -101 и термоядерной боевой частью переменной мощности W-80-1. Крылья и рули складываются в фюзеляж и выпускаются через две секунды после запуска.

Инерциальная навигационная система ракеты Litton P-1000 до самого запуска получает обновленную информацию от бортовой ИНС В-52, а во время полета используется на начальном и маршевом участках полета. ИНС P-1000 состоит из ЭВМ, инерциальной платформы и барометрического высотомера, вес составляет 11 кг. Инерциальная платформа состоит из трех гироскопов для измерения угловых отклонений ракеты и трех акселерометров, определяющих ускорения этих отклонений. Р-1000 имеет уход от курса в пределах до 0,8 км. за час.

При полете на малой высоте на маршевом и конечном участках полета AGM-86B использует корреляционную подсистему AN/DPW-23 TERCOM, и состоит из ЭВМ, радиовысотомера и набора эталонных карт районов по маршруту полета. Ширина луча радиовысотомера 13-15°. Диапазон частот 4-8 ГГц. Принцип работы подсистемы TERCOM основан на сопоставлении рельефа местности конкретного района нахождения ракеты с эталонными картами рельефа местности по маршруту ее полета. Определение рельефа местности осуществляется путем сравнения данных радио- и барометрического высотомеров. Первый измеряет высоту до поверхности земли, а второй - относительно уровня моря. Информация об определенном рельефе местности в цифровой форме вводится в бортовой компьютер, где сопоставляется с данными о рельефе фактической местности и эталонных карт районов. Компьютер выдает сигналы коррекции для инерциальной подсистемы управления. Устойчивость работы TERCOM и необходимая точность определения места крылатой ракеты достигаются путем выбора оптимального числа и размеров ячеек, чем меньше их размеры, тем точнее отслеживается рельеф местности, а следовательно, и местоположение ракеты. Однако из-за ограниченного объема памяти бортового компьютера и малого времени для решения навигационной задачи, принят нормальный размер 120х120 м. Вся трасса полета крылатой ракеты над сушей разбивается на 64 района коррекции протяженностью по 7-8 км и шириной 48-2 км. Принятые количественные характеристики ячеек и районов коррекции, по заявлениям американских специалистов, обеспечивают вывод крылатой ракеты к цели даже при полете над равнинной местностью. Допустимая погрешность измерения высоты рельефа местности для надежной работы подсистемы TERCOM должна составлять 1 метр.

Исходя из разных источников, система наведения обеспечивает КВО 30-90 м. Бомбардировщики В-52Н оснащены роторными пусковыми установками CSRL (Common Strategic Rotary Launcher) и позволяют разместить на борту до 20 ракет AGM-86B - в бомбоотсеке 8 ракет на CSRL, и 12 ракет на двух пилонах под крыльями.

Всего до завершения производства в 1986 г. на заводах фирмы Боинг было выпущено более 1715 ракет AGM-86B.

В 1986 г. Боинг начала переоборудовать часть ракет AGM-86B к стандарту AGM-86C. Основным изменением является замена термоядерной БЧ на 900-кг осколочно-фугасную. Данная программа получила обозначение CALCM (Conventional ALCM). Ракеты AGM-86C оснастили приемником системы спутниковой навигации GPS и электронно-оптической корреляционной системой DSMAC (Digital Scene Matching Area Correlator), что существенно повысило точность ракеты (КВО снизилось до 10 м). В DSMAC используются цифровые "картины" предварительной отснятых районов местности по маршруту полета. Система начинает работать на конечном участке полета после последней коррекции по TERCOM. С помощью оптических датчиков производится осмотр районов, прилегающих к цели. Полученные изображения в цифровой форме вводятся в компьютер. Он сравнивает их с эталонными цифровыми "картинками" районов, заложенными в его память, и выдает корректирующие команды. При подлете к цели включается активная радиолокационная ГСН. В ее состав входят антены с устройством сканирования, приемопередатчик и блок обработки сигналов, а так же ответчик системы "свой-чужой". Для обеспечения помехозащищенности предусмотрена работа РСЛ на переменных частотах, изменяющихся по случайному закону.

В виду того, что CALCM тяжелее чем ALCM, дальность полета существенно снизилась. Во время операции "Буря в пустыне" и войны в Югославии ракеты AGM-86C получили успешное применение.

Изначальный вариант конфигурации AGM-86C имеет обозначение CALCM Block 0. Новый вариант Block I оснащен улучшенным электронным оборудованием и GPS-приемником, более тяжелой 1450-кг ОФ БЧ. Испытания ракеты были успешно проведен в 1996 г., после чего все существующие ракеты Block 0 были доработаны до Block I. Следующим вариантом стал Block IA, ориентированный на повышение точности на конечном участке полета. По расчетам КВО должно составлять 3 м. Работы по Block IA были начаты в 1998 г., а в январе 1991 г. первая CALCM Block IA была поставлена в ВВС. В настоящее время до варианта Block I/1A доработано около 300 ракет ALCM.

Для обучения и тренировки технического состава был создан учебно-тренировочный вариант DATM-86C, оснащенный учебной БЧ и силовой установкой.

В ноябре 2001 г. были проведены летные испытания крылатой ракеты AGM-86D Block II, оснащенной новой 540-кг проникающей БЧ AUP (Advanced Unitary Penetrator), предназначенной для поражения сильно укрепленных или находящихся глубоко под землей целей. Предполагается произвести около 200 ракет AGM-86D.


Длина, м 6,32

Диаметр, м 0,62

Размах, м 3,66

AGM-86B 1450C Block I 1950

Скорость, км/ч 800

БЧB термоядерная W-80-1, 5-150кT

AGM-86C Block I 1450 кг, ОФ

AGM-86D 540 кг, проникающая

Двигатель ДТРД F107-WR-101

Тяга двигателя, кН 2,7

Дальность, кмB 2400C Block I 1200

Противокорабельная ракета "Tomahawk" BGM-109 B/E

Крылатая ракета "Tomahawk" создана в двух основных вариантах: стратегическом BGM-109А/С/D - для стрельбы по наземным объектам, и тактическом BGM-109B/E - для уничтожения надводных кораблей и судов. Все варианты благодаря модульному принципу построения отличаются друг от друга только головной частью, которая с помощью стыковочного узла присоединяется к среднему отсеку ракеты.

Противокорабельная ракета "Tomahawk" BGM-109 B/E, состоящая на вооружении ВМС США с 1983 года предназначена для стрельбы по крупным надводным целям на загоризонтных дальностях.

Она имеет модульную конструкцию, выполнена по самолетной схеме. Фюзеляж цилиндрической формы с оживальной головной частью состоит из шести отсеков, в которых расположены активная радиолокационная ГСН с обтекателем из стеклопластика, бортовая система управления, боевая часть, топливный бак, маршевый двигатель и приводы рулей управления. К последнему отсеку соосно с ракетой пристыковывается стартовый РДТТ. Все отсеки выполнены из алюминиевого сплава и снабжены элементами жесткости. Для уменьшения инфракрасного излучения корпус и аэродинамические поверхности имеют специальное покрытие.

На борту ракеты установлены активная радиолокационная головка самонаведения, инерциальная навигационная система, радиовысотомер и блок питания. ГСН массой около 34 кг способная для повышения помехоустойчивости в условиях радиоэлектронного противодействия изменять частоту излучения по произвольному закону. Инерциальная система массой 11 кг включает в себя бортовую цифровую вычислительную машину (БЦВМ), автопилот (АП), состоящий из трех гироскопов для измерения угловых отклонений ракеты в системе координат и трех акселерометров для определения ускорений этих отклонений. Активный короткоимпульсный радиовысотомер (диапазон 4-8 ГГц) с шириной луча 13-15° имеет разрешающую способность по вертикали 5-10см, по горизонтали 15см.

Фугасная боевая часть оснащена контактным взрывателем с замедлением и позволяет для достижения наибольшего поражающего эффекта осуществлять подрыв БЧ внутри корабля.

Специально для ракеты "Tomahawk" был разработан малогабаритный турбореактивный двухконтурный двигатель Williams International F107-WR-402 с низкой степенью сжатия и осевым двухступенчатым вентилятором. Его высокие эксплуатационные характеристики позволяют длительное время поддерживать околозвуковую крейсерскую скорость полета (0.7М).

Стартовый РДТТ развивает тягу до 3700кгс и через 10-13с после пуска из-под воды или с корабельной пусковой установки (ПУ) обеспечивает вывод ракеты на управляемый участок полета. Отделение ускорителя от ракеты происходит с помощью разрывных болтов после полного выгорания топлива.

Пуск ПКР "Tomahawk" осуществляется с палубных пусковых установок, штатных торпедных аппаратов (ТА) или из вертикально расположенных ракетных контейнеров. Концепция вертикального старта ПКР с надводных кораблей является основной в развитии техники пуска этого оружия, поэтому основными штатными ПУ являются универсальные установки типа Мк41, способные обеспечивать пуск управляемых ракет "Tomahawk", "Standard" и противолодочных ракет "Asroc-VLA".

Один из вариантов переоборудования надводных кораблей в носители ракет - оснащение их унифицированными счетверенными ПУ Мк143. Эти ПУ предназначены для хранения и пуска ракет "Tomahawk" и "Harpoon". При этом в одной ПУ может размещаться по четыре КР "Tomahawk" или "Harpoon" либо по две ракеты каждого типа. Перед их пуском ПУ с помощью гидравлической системы устанавливается под углом 35° по отношению к палубе. Бронированный кожух защищает ракеты от осколков и механических повреждений, а также личный состав при случайном (аварийном) срабатывании стартового ускорителя.

На подводных лодках ракета находится в стальной капсуле, заполненной азотом. Газовая среда под небольшим избыточным давлением обеспечивает хранение ракеты в течение 30 месяцев. Капсула загружается в ТА как обычная торпеда. При подготовке к пуску вода заполняет ТА, а через специальные отверстия также и капсулу. Это приводит к выравниванию внутреннего и наружного давления, соответствующего глубине пуска 15-20м. После этого открывается крышка ТА, и ракета с помощью гидравлической системы выстреливается из капсулы, которая затем удаляется из аппарата. При достижении ракетой безопасного для стреляющей подводной лодки расстояния с помощью 12-метрового фала происходит запуск ускорителя, обеспечивающего за время около 5с прохождение подводного участка траектории. Включение стартового РДТТ под водой сильно демаскирует подводную лодку, особенно по акустическому полю. Подготовка к пуску из ТА занимает около 20 мин. Создана конструкция капсулы из упрочненного графитовым волокном стеклопластика, в результате чего ее масса уменьшилась на 180-230 кг.

Одной из трудностей боевого применения противокорабельных ракет является отсутствие надлежащих технических средств обнаружения надводного корабля противника и целеуказания, так как стрельба ведется на большую (загоризонтную) дальность. Для решения этой проблемы в США разработана автоматизированная система "Outlaw Shark" для загоризонтного целеуказания противокорабельной КР с использованием патрульных вертолетов и палубных самолетов. При этом данные о цели, находящейся за горизонтом, поступают от различных средств в реальном масштабе времени в ЭВМ корабля-носителя КР. Обработав их, ЭВМ выдает в счетно-решающее устройство КР целеуказание, а также информацию о других кораблях, находящихся вблизи траектории полета ракеты.

Дальность стрельбы,км 550

Скорость полета максимальная, км/час 1200

Скорость полета средняя, км/час 885

Длина ракеты, м 6.25

Диаметр корпуса ракеты, м 0.53

Размах крыльев, м 2.62

Стартовый вес,кг 1205

Боевая часть

Тип фугасная

Вес,кг 454

Маршевый двигатель

Вес сухого двигателя, кг 58.5

Вес топлива, кг 135

Тяга, кг 300

Удельная масса двигателя, кг/кгс 0.22

Длина, мм 800

Диаметр, мм 305

Х-59МК Овод-МК

Страна: Россия

Тип: Тактический ракетный комплекс

Одной из сенсаций МАКС-2001 стала новая управляемая Х-59МК, разработанная ФГУП МКБ "Радуга" (г. Дубна, Московской области). Она спроектирована на базе широко известной ракеты Х-59М, которая является основным оружием фронтовой авиации для поражения особо важных наземных целей. В отличие от прародителя, оснащенного телевизионно-командной системой наведения, Х-59МК несет активную радиолокационную головку самонаведения. Замена стартового ускорителя на топливный бак позволила увеличить дальность полета со 115 до 285 км. К недостаткам ракеты относится дозвуковая скорость полета, к достоинствам - отработанность базового варианта, мощная - 320 кг - боевая часть (БЧ) и меньшая, чем у сверхзвуковых систем, стоимость.

По оценке специалистов "Радуги", вероятность попадания в крейсер или эсминец составляет 0,9-0,96, в катер - 0,7-0,93. При этом, для поражения катера достаточно одной ракеты, а расчетное среднее число попаданий для уничтожения крейсера или эсминца составляет, соответственно, 1,8 и 1,3.

Х-59МК прошла наземные испытания и будет запущена в производство в случае появления интереса к ней со стороны инозаказчиков. Последнее весьма вероятно, поскольку исходной системой - Х-59М - вооружаются истребители семейства Су-27, поставляемые в Китай и Индию. Х-59МК имеет сравнительно небольшую массу - 930 кг, что позволяет подвешивать на истребитель Су-27 до 5 таких ракет.


Разработчик МКБ "Радуга"

Изготовитель Смоленский авиационный завод

Макс. дальность пуска, км 285

Система наведения активная радиолокационная

Вес ракеты, кг 930

Вес БЧ, кг 320

Тип БЧ проникающая

Стратегическая крылатая ракета Х-55 (РКВ-500)

Х-55 - дозвуковая малогабаритная стратегическая крылатая ракета, совершающая полет с огибанием рельефа местности на малой высоте, предназначена для использования против важных стратегических обьектов противника с заранее разведанными координатами.

Ракета разработана в НПО "Радуга" под руководством генерального конструктора И.С.Селезнёва в соответствии с постановлением СМ СССР от 8 декабря 1976г. Проектирование новой ракеты сопровождалось решением массы проблем. Большая дальность полета и малозаметность, требовали высокого аэродинамического качества при минимальной массе и большого запаса топлива при экономичной силовой установке. При требуемом числе ракет их размещение на носителе диктовало предельно компактные формы и делало необходимым складывание практически всех выступающих агрегатов - от крыла и оперения до двигателя и законцовки фюзеляжа. В результате был создан оригинальный летательный аппарат со складывающимися крылом и оперением, а также с двухконтурным турбореактивным двигателем, размещающимся внутри фюзеляжа и выдвигаемым вниз перед отцепкой ракеты от самолета.

В 1983 году за создание и освоение производства Х-55 большая группа работников МКБ "Радуга" и Дубнинского машиностроительного заводе удостоена Ленинской и Государственной премий.

В марте 1978г. было начато развертывание производства Х-55 на Харьковском авиапромышленном объединении (ХАПО). Первая серийная ракета, изготовленная на ХАПО, была передана заказчику 14 декабря 1980г. В 1986 году производство было передано на Кировский машиностроительный завод. Производство агрегатов Х-55 было развернуто также на Смоленском авиазаводе. Развивая удачную конструкцию МКБ "Радуга" разработало в дальнейшем ряд модификаций базовой Х-55 (изделие 120), среди которых можно отметить Х-55СМ с увеличенной дальностью (принята на вооружение в 1987году) и Х-555 с неядерной боевой частью и улучшенной системой наведения.

Носителями КР Х-55 являются самолеты стратегической авиации - Ту-95МС и Ту-160.

На западе ракета Х-55 получила обозначение AS-15 "Kent".

Х-55 выполнена по нормальной аэродинамической схеме с прямым крылом относительно большого удлинения. (см. проекции сбоку, сверху, снизу) Оперение цельноповоротное. В транспортном положении крыло и мотогондола убираются в фюзеляж, а оперение складывается (см.компоновочную схему).

Двухконтурный турбореактивный двигатель Р-95-300, разработанный под руководством гл.конструктора О.Н.Фаворского, расположен на выдвижном подфюзеляжном пилоне. Р95-300 развивает статическую взлетную тягу 300..350 кгс, обладая поперечным размером в 315мм и длиной 850мм. При собственной массе 95кг весовая отдача Р-95-300 составляет 3.68кгс/кг - на уровне ТРД современных боевых самолетов. Р-95-300 создавался с учетом достаточно широкого полетного диапазона, свойственного крылатым ракетам, с возможностью маневра по высоте и скорости. Запуск двигателя осуществляется пиростартером, размещённым в хвостовом коке ротора. В полёте при выпуске мотогондолы для снижения сопротивления происходит удлинение хвостового кока фюзеляжа (кок выдвигается при помощи пружины, удерживаемой в натянутом состоянии нихромовой проволокой, которая пережигается электрическим импульсом). Для выполнения полетной программы и регулирования Р-95-300 оборудован современной автоматической электронно-гидромеханической системой управления. Помимо обычных сортов топлива (авиационного керосина Т-1, ТС-1 и других) для Р-95-300 было разработано специальное синтетическое боевое топливо Т-10 - децилин. Т-10 - высококалорийное и токсичное соединение, именно с этим топливом достигались максимальные характеристики ракеты. Особенностью Т-10 является его высокая текучесть, требующая особо тщательной герметизации и уплотнения всей топливной системы ракеты.

Потребность в размещении значительного запаса топлива при ограниченных размерах привела к организации всего фюзеляжа Х-55 в виде бака, внутри которого в герметичных проемах размещаются крыло, боевая часть, арматура и ряд других агрегатов. Плоскости крыла складываются в фюзеляж, помещаясь одна над другой. При выпуске плоскости оказываются на разной высоте относительно строительной горизонтали изделия, фиксируясь с разными углами установки, из-за чего в полетной конфигурации Х-55 становится асимметричной. Складным выполнено и хвостовое оперение, все поверхности которого являются рулевыми, причем консоли шарнирно ломаются дважды. Фюзеляж ракеты выполнен полностью сварным из сплава АМГ-6.

В конструкции ракеты реализованы мероприятия по снижению радиолокационной и тепловой заметности. За счет небольшого миделя и чистоты обводов, ракета имеет минимальную ЭПР, что затрудняет ее обнаружение средствами ПВО. Поверхность корпуса не имеет контрастных щелей и острых кромок, двигатель укрыт фюзеляжем, широко использованы конструкционные и радиопоглощающие материалы. Обшивка носовой части фюзеляжа, крыла и оперения изготовлена из специальных радиопоглощающих материалов на основе кремнийорганического композита.

Система наведения ракеты является одним из существенных отличий данной крылатой ракеты от предшествующих систем авиационного оружия. Ракета использует инерциальную систему наведения с коррекцией местоположения по рельефу местности. Цифровая карта местности, вводится в бортовую вычислительную машину перед пуском. Система управления обеспечивает длительный автономный полет ракеты Х-55 независимо от протяженности, погодных условий и т.д. Обычный автопилот на Х-55 заменила электронная бортовая система управления БСУ-55, отрабатывавшая заданную программу полета со стабилизацией ракеты по трем осям, удержанием скоростного и высотного режима и возможностью выполнения заданных маневров для уклонения от перехвата. Основным режимом являлся проход маршрута на предельно малых высотах (50-100м) с огибанием рельефа, на скорости порядка M=0.5-0.7, соответствующей наиболее экономичному режиму.

Х-55 оснащена вновь разработанной компактной термоядерной БЧ с зарядом мощностью 200Кт. При заданной точности (КВО не более 100м), мощность заряда обеспечивала поражение основных целей - стратегических центров государственного и военного управления, военно-промышленных объектов, баз ядерного оружия, пусковых ракетных установок, включая защищенные объекты и укрытия.

Носителями ракеты являются дальние бомбардировщики ТУ-95МС и Ту-160. Каждый бомбардировщик Ту-95МС-6 может нести до шести ракет, расположенных на пусковой барабанной установке МКУ-6-5 катапультного типа в грузоотсеке самолета (см. фото). Вариант Ту-95МС-16 несет шестнадцать Х-55: шесть на МКУ-6-5, по две на внутренних подкрыльевых катапультных установках АКУ-2 у фюзеляжа и по три - на внешних установках АКУ-3, размещенных между двигателями. В двух грузоотсеках сверхзвукового Ту-160 может располагаться 12 крылатых ракет большой дальности Х-55СМ (с дополнительными баками) или 24 обычных крылатых ракеты Х-55.

Модификации ракеты:

Х-55ОК (изделие 121) отличается системой наведения с оптическим коррелятором по эталонному изображению местности.

Модификация Х-55СМ (изделие 125) предназначена для поражения целей на удалении до 3500км. Система наведения осталась прежней, однако значительное повышение дальности потребовало почти полуторакратного увеличения запаса топлива. Чтобы не менять отработанную конструкцию по бокам фюзеляжа снизу оборудовали конформные баки на 260кг топлива, практически не повлиявшие на аэродинамику и балансировку ракеты. Такая конструкция позволила сохранить габариты и возможность размещения шести ракет на МКУ внутри фюзеляжа. Однако возросшая до 1465кг масса вынудила ограничить число ракет на подкрыльевых подвесах ТУ-95МС (может подвешиваться восемь Х-55СМ вместо десяти Х-55).

Неядерный вариант Х-55 получил обозначение Х-555. Новая ракета оснащается инерциально-допплеровской системой наведения, сочетающей коррекцию по рельефу местности с оптико-электронным коррелятором и спутниковой навигацией. В результате КВО составило около 20м. Предусматривается возможность снаряжения Х-555 несколькими типами БЧ: фугасной, проникающей - для поражения защищенных целей или кассетной с осколочными, фугасными или кумулятивными элементами для удара по площадным и протяженным целям. В связи с увеличением массы БЧ был уменьшен запас топлива и соответственно дальность полета до 2000км. В конечном счете более массивная БЧ и новая аппаратура управления привели к увеличению стартовой массы Х-555 до 1280кг. Х-555 оснащается конформными подвесными баками на 220кг топлива.

Х-65 - тактическая противокорабельная модификация Х-55 с обычной боеголовкой.

Тактико-технические характеристики

Х-55СМ 6.040

Х-55 5.880

Диаметр корпуса,м

Х-55СМ 0.77

Х-55 0.514

Размах крыльев, м 3.10

Стартовый вес,кг

Х-55СМ 1465

Х-55 1185

Х-555 1280

Мощность боевой части, кт 200

Масса боевой части, кг 410

Дальность полета,км

Х-55СМ 3500

Х-55 2500

Скорость полета,м/с 260

Высота полета на маршевом участке траектории, м 40-110

Высота пуска, м 20-12000

Диапазон скоростей самолёта-носителя, км/ч 540-1050

Испытания, эксплуатация

Первый полет опытного самолета-носителя Ту-95М-55 (ВМ-021) состоялся 31 июля 1978г. Всего на этой машине к началу 1982г. было выполнено 107 полетов и произведены пуски десяти Х-55. Самолет был потерян в катастрофе 28 января 1982г. на взлете из Жуковского из-за ошибки пилота.

Испытания Х-55 шли весьма интенсивно, чему способствовала тщательная предварительная отработка системы управления на моделирующих стендах НИИАС. В ходе первого этапа испытаний было проведено 12 пусков, лишь один из которых завершился неудачей из-за отказа генератора энергосистемы. Помимо собственно ракеты, доводилась система управления оружием, с борта носителя осуществлявшая ввод полетного задания и выставку гироинерциальных платформ ракеты.

Первый пуск серийной Х-55 был произведен 23 февраля 1981г. 3 сентября 1981г. был произведен первый зачетный пуск с первой серийной машины Ту-95МС. Испытания комплекса проводились на трассово-измерительном комплексе полигона 929-го ЛИЦ. Испытательные пуски Х-55 выполнялись практически во всем диапазоне полетных режимов носителя с высот от 200м до 10км. Запуск двигателя выполнялся надежно, скорость на маршруте, регулируемая в зависимости от снижения веса при выработке топлива, выдерживалась в диапазоне 720-830км/ч. При заданной величине КВО не более 100м в ряде пусков достигалось отклонение всего 20-30м.

Первыми к освоению нового комплекса приступили в семипалатинском 1223-м ТБАП, куда 17 декабря 1982г. прибыли два новых Ту-95МС. С 1984г. переучиванию на Ту-95МС приступил соседний 1226-й ТБАП той же семипалатинской 79-й ТБАД. Одновременно шло оснащение Ту-95МС полков ДА в европейской части СССР - 1006 ТБАП в Узине под Киевом и 182-го гв. ТБАП в Моздоке, входившего в 106-ю ТБАД. В дивизии были сосредоточены более совершенные Ту-95МС-16. Первые Ту-160 поступили в апреле 1987г. в 184-й гв.ТБАП, находившийся в Прилуках на Украине. Уже через три месяца 1 августа 1987г. экипаж командира полка В.Гребенникова первым выполнил пуск Х-55.

После распада СССР большая часть ракет Х-55 и их самолетов-носителей осталась за пределами России, в частности,в Казахстане и на Украине, где находилось, соответственно, 40 Ту-95МС в Семипалатинске, 25 в Узине и 21 Ту-160 в Прилуках. Вместе с самолетами на украинских базах оставалось 1068 ракет Х-55. С Казахстаном удалось договориться достаточно быстро, обменяв тяжелые бомбардировщики на предложенные российской стороной истребители и штурмовики. К 19 февраля 1994г. все ТУ-95МС были перегнаны на дальневосточные аэродромы, где ими были оснащены 182-й и 79-й ТБАП. Переговоры с Украиной тянулись долго. В конечном итоге в счет долгов за газ украинской стороной были переданы три ТУ-95МС и восемь Ту-160, перелетевшие в Энгельс в феврале 2000г. В конце 1999 г. 575 крылатых ракет воздушного базирования Х-55 и Х-55СМ также было доставлено из Украины в Россию.

В российских ВВС все силы ДА объединены в 37-ю ВА. В ее составе к июлю 2001г. находились 63 самолета Ту-95МС с числящимися за ними 504 ракетами Х-55, а также 15 Ту-160. Первый практический пуск Х-55СМ с борта Ту-160 был выполнен экипажем полковника А.Д.Жихарева 22 октября 1992г. В июне 1994г. четыре Ту-95МС и Ту-160 принимали участие в учениях СЯС России, отработав тактические пуски над Северным морем и затем выполнив реальную стрельбу Х-55СМ на полигоне. В сентябре 1998г. группой из четырех Ту-95МС 184-го ТБАП были произведены пуски Х-55 в районе полигона Северного флота Чижа, откуда ракеты прошли 1500км до цели.

В ходе учений "Запад-99"" в июне 1999г. пара Ту-95МС из Энгельса выполнила 15-часовой полет, дойдя до Исландии, и на обратном пути произвела пуск Х-55 по учебной цели в районе Каспия. В октябре 2002г. экипаж Ту-160 полковника Ю.Дейнеко в ночном полете прошел маршрутом над приполярными районами, выполнив практический пуск Х-55СМ. 14 мая 2003г. четверка Ту-95МС и шесть Ту-160 участвовали в учениях, охватывавших район Персидского залива и Индийского океана. Пуски Х-55 с борта Ту-95МС проводились и в ходе стратегической командной тренировки наземных, морских и воздушных СЯС в феврале 2004г.

Страна: Россия

Тип: Тактическая крылатая ракета

В середине 1980-х гг.в МКБ LРадуга? на базе КРВБ Х-55 была создана крылатая ракета, оснащенная обычной боевой частью (фугасной или кассетной). Она получила обозначение Х-65.

Ее летно-технические данные впервые были представлены на Московском авиашоу в 1992. Сама Х-65 была показана впервые в 1993 (в феврале - Абу-Даби, а в сентябре - в Жуковском и Нижнем Новгороде).

Ракета Х-65 может применяться как со стратегических бомбардировщиков Ту-95 и Ту-160, так и с истребителей-бомбардировщиков, соответственно с роторных пусковых устройств типа МКУ-6-5 или ординарных балочных пусковых устройств. Пуск Х-65 может производится с высоты до 12 км при скорости самолета-носителя 540-1050 км/ч. Система управления Х-65 инерциальная с коррекцией по рельефу местности. Ракета Х-65 проходила испытания с конца 80-х гг., но данных об ее принятии на вооружение нет.

Для поражения надводных кораблей с эффективной поверхностью рассеивания 300 м2 в условиях сильного электронного противодействия на базе Х-55 создана противокорабельная ракета Х-65СЭ. По своим характеристикам она отличается от Х-65 лишь дальностью стрельбы (250 км при запуске на малых и 280 км - на больших высотах) и системой управления. Боевая часть ракеты кумулятивно-фугасная весом 410 кг.

Самолет-носитель (Ту-22М3 или другой) может осуществить пуск ракеты Х-65СЭ с высоты от 0,1 до 12 км со скоростью 540-1050 км/ч по морской цели, координаты которой известны лишь ориентировочно. Пуск ракеты осуществляется по принципу выстрелил и забыл. В заданный район ракета летит на малой высоте, управляясь инерциальной системой наведения. В предполагаемом месте нахождения цели ракета увеличивает высоту полета и начинает барражировать, включив бортовую активную радиолокационную головку самонаведения, пока не захватит цель.

Ракета Х-65СЭ экспонировалась на выставке МАКС-97. Данных о принятии ее на вооружение нет.


Характеристики:

Разработчик МКБ Радуга

Х-65 середина 80-х

Х-65СЕ 1992

Тип ГСН 115

Х-65 инерциальная + коррекция по местности

Х-65СЕ инерциальная + активная радиолокационная

Длина, м 6,04

Размах крыла, м 3,1

Диаметр корпуса, м 0,514

Стартовый вес, кг 1250

Тип боеголовки

Х-65 фугасная или кассетная

Х-65СЕ фугасно-кумулятивная

Масса БЧ, кг 410

Двигатель ДТРД

Скорость, км/ч (м/с; М)840 (260; 0,77)

Скорость пуска, км/ч540 - 1050

Высота пуска, м 100-12000

Дальность пуска, км-

Х-65 500-600

Х-65СЕ 250-280

Высота полёта на маршевом участке траектории, м40-110


Рассмотрев и проанализировав все представленные выше ракеты, в качестве прототипа выбираем противокорабельную ракету "Tomahawk" BGM-109 B/E.


1.2 СОВРЕМЕННЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРОВАНИЮ КРЫЛАТЫХ РАКЕТ


Высокая эффективность современных систем ПВО меняет требования к КР. Вернее, чтобы быть эффективным оружием, КР должны иметь только хорошие аэродинамические характеристики, минимальный стартовый вес, небольшой удельный расход топлива. Однако оборонные системы ставят ряд новых требований. В настоящее время малая эффективная поверхность рассеивания имеет такое же значение, как высокие летные характеристики.

Проектирование сложной новой техники, какой является КР - процесс многозначный и весьма неопределённый: это путь перехода от достигнутых знаний, с чего начинается проектирование к созданию ещё не существующего объекта на основе задания на проектирование и новых технических решений. Можно с уверенностью утверждать, что такой процесс жёстко запрограммировать и очень конкретно описать невозможно. Однако возможно методологическое описание проектирования, т.е. изложение концепции, основных принципов и особенностей процесса.

При формировании общих подходов к проектированию естественным желанием конструктора является стремление, возможно полно учесть все факторы, определяющие облик будущей техники. Этому требованию полноты можно удовлетворить лишь в рамках иерархи ческой структуры принципов, верхний уровень которой содержит небольшое число наиболее общих основополагающих принципов, имеющих отношение к самым различным видам технических систем. На мой взгляд таких принципов три.

Первый принцип отражает главный источник нового качества техники, средство и основное направление достижения цели. Традиционный подход сравнительно слабо связан с внедрением нововведений. Он тяготеет к проектированию по прототипу, т.е. «от достигнутого» путём обновления техники на основе последовательного незначительного улучшения конструкции, но современным воззрениям, коренное повышение качество технических систем можно получить лишь на основе внедрения результатов научно-технического прогресса, т.е. при использовании новых идей и высокопроизводительных технологий, реализующих критерий «максимум результата при минимуме затрат».

История развития техники показывает, что первый образец принципиально нового устройства обычно создаётся в условиях неполной изученности его свойств. Поэтому параметры такого объекта, как правило не оптимальны и имеются значительные резервы для улучшения. С началом эксплуатации объекта начинается процесс устранения его недостатков, улучшение показателей качества. Совершенствование осуществляется за счёт оптимизации конструктивных параметров, изменения конструктивных и технологических решений отдельных частей объекта. Улучшению показателей качества способствуют рост общего научно-технического потенциала промышленности и развитие технологии производства. Совершенствование объекта продолжается до тех пор, пока не будут получены глобально оптимальные значения параметров для данной структуры объекта, когда дальнейшее улучшение показателей качества становится невозможным.

История развития техники показывает, что технический объект отмирает в период своего наивысшего развития, т.е. когда в максимальной степени реализованы его показатели качества. Так, применение реактивных двигателей в авиации началось тогда, когда они ещё уступали поршневым двигателям. При увеличении скорости полёта более 700-800 км/ч поршневой двигатель исчерпал себя, но к этому времени уже были достаточно отработаны реактивные двигатели, позволяющие продолжить развитие авиации в направлении увеличения скорости полёта.

Итак главный источник нового качества техники - это научно-технический потенциал общества. При создании новых технических объектов необходимо определить, на каком уровне конструктивной эволюции находится прототип и каковы перспективы его развития, какие изменения в науке и технике произошли с начала создания первых образцов рассматриваемого класса изделий, какие достижения НТП не нашли своего отражения при создании существующих объектов, что можно использовать из последних достижений науки и техники для разработки новых принципов действия, конструктивных и технологических решений для создания нового технического устройства с целью удовлетворения непрерывно возрастающих потребностей.

Второй принцип - системный подход к проектированию новой техники. Главной особенностью и положительной стороной практической реализации системного подхода является то, что решение частых задач выбирается в интересах более общих задач: в соответствии с этим его сущность состоит в выявлении всех основных взаимосвязей между переменными факторами и в установлении их влияния на поведение всей системы как единого целого Системный подход предполагает свойства исследуемому объекту, которые не присущи его отдельным элементам или их совокупности без системного объединения.

Структура объекта проектирования определяет свойства, которые с достаточно высокой надёжностью обеспечивают конкретную область функционирования объекта «функциональную нишу» и могут быть приданы ему в ходе производственного процесса. Обычно структура объекта рассматривается как основная характеристика его облика и в ряде случаев даже как синоним облика.

Различные структуры технических систем отличаются друг от друга числом компонентов и самими компонентами. Очевидно, что чем больше единообразия в этих компонентах тем технологичнее и дешевле система. Обратной стороной противоположностью единообразия является многономенклатурность. С точки зрения производства и эксплуатации многономенклатурность - самое отрицательное качество, которое влечёт за собой негативные последствия на Всех этапах жизненного цикла системы, начиная от зарождения и кончая эксплуатацией и даже утилизацией.

Вместе с тем многономенклатурность - это средство придания гибкости системе: практически лишь за счёт многономенклатурности обеспечивается адаптивность системы к изменяющимся целевым задачам. То и другое оказывает положительное влияние на функциональную эффективность системы. Единообразие и многономенклатурность ~ две противоположные тенденции развития структур современных технических систем, разрешаемые путём компромисса. В конечном итоге такой компромисс состоит в сведении разнообразных компонентов (подсистем) к небольшому числу избранных типов, образующих параметрический ряд (или типоряд) компонентов.

Унификация - это способ устранения многообразия в типоразмерах техники, приведение к единообразию систем, их подсистем и элементов, что придаёт им универсальные свойства с точки зрения назначения, производства и эксплуатации. Наиболее распространённой формой унификации является введение единообразия по конструктивно-техническим решениям. Для изделий параметрического ряда помимо конструктивной унификации, как правило, предусматривается еще упорядочение по областям применения.

По современным представлениям, унификация технических средств наилучшим образом достигается на основе блочно-модульного построения техники. Блочно-модульный принцип означает переход от индивидуального конструирования отдельных типов и модификаций изделий к системному проектированию семейств изделий. При этом широко используются ранее сконструированные, освоенные в производстве и частично уже изготовленные (в отдельных случаях) унифицированные модульные составные части.

Как правило, модуль представляет собой технологически законченный объект, имеющий вполне определённое функциональное назначение. Он может быть специализированным, т.е. отраслевого назначения, но может быть пригоден и для общемашиностроительного применения.

Блочно-модульный принцип проектирования обеспечивает возможность быстрого создания новых, модифицированных, а в ряде случаев стандартных изделий из отработанных в изготовлении и эксплуатации (значит, надёжных) унифицированных составных частей-модулей с добавлением необходимых новых элементов.

Важным преимуществом блочно-модульного принципа формирования новой техники является повышение серийности производства и упрощение технологии сборки. Третий принцип - автоматизация проектирования. Автоматизированное проектирование - это качественно новый уровень проектирования, базирующийся на современных информационных технологиях и вычислительной технике.

Автоматизация проектирования в наше время является одним из важнейших принципов проектно-конструкторской деятельности.

Автоматизированное проектирование ГОСТ определяет как процесс составления описания ещё не существующего объекта, при котором отдельные преобразования описаний объекта и (или) алгоритма его функционирования или алгоритма процесса, а также представления описаний на различных языках осуществляются взаимодействием человека и ЭВМ. Существует три направления: Первое направление - осмысление и неформальное представление проблемы.

Объективное и всестороннее описание проблемы определяет требования к новой технике, постановку задачи, проектирования пути реализации проекта и в конечном итоге качество удовлетворения потребностей. Научно-методической основой этапа осмысления проблемы является системное мышление с использованием всего арсенала системного подхода, включая анализ и синтез, индукцию и дедукцию, абстракцию и конкретизацию. Чтобы осмысление проблемы было лучше приспособлено для решения практических задач, во многих случаях, стремясь структурировано «объять необъятное», предпочтение следует отдать дедуктивным композиционным подходам.

Итогом этапа осмысления проблемы является упорядоченная (обычно иерархическая) структура факторов, определяющих функциональные и стоимостные свойства вновь создаваемой системы (объекта). В числе факторов обязательно должны быть чётко сформулированные целевые задачи, взаимодействующие стороны со своими интересами, характеристики эффекта и ущерба, возможные последствия от применения системы и т.д. Информация должна быть достаточной для критического анализа технического задания заказчика и формирования перечня математических моделей.

Второе направление - математическое моделирование проектной задачи. Обычно при проектировании используют два типа моделей: оценочные (упрощённые) и проверочные (более точные). Оценочные модели, ориентированные преимущественно на линейные зависимости, применяют на начальной стадии проектирования при формировании опорных вариантов.

Проверочные модели с использованием численных методов реализации позволяют наиболее точно описывать задачу. Результаты, получаемые с помощью поверочных моделей, имеют ценность, сопоставимую с экспериментальными данными.

При описании проектных задач, требующих учёта неопределённых и случайных факторов, классические методы оказываются малоприемлемыми. Более подходящим оказывается имитационное моделирование. Под имитацией понимают численный метод проведения на цифровых вычислительных машинах экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительных периодов времени. Имитационная модель - это компьютерный аналог сложного реального явления. Оно позволяет заменить эксперимент с реальным процессом экспериментов с математической моделью этого процесса.

Третье направление - пользовательский интерфейс. Компьютерная технология, иначе - пользовательский интерфейс, представляет собой совокупность методологий анализа, разработки и сопровождения сложных прикладных программ, поддержанную комплексом средств автоматизации. Требования предъявляемые к КР: - Обеспечение минимальной массы конструкции. Наиболее эффективной конструкцией, комплексно удовлетворяющей требованиям прочности, жёсткости и минимальной массы, является тонкостенная оболочка, представляющая собой обшивку, подкреплённую силовым набором. В такой оболочке материал расположен по периферии, что, как известно, обеспечивает наибольшую прочность и жёсткость конструкции. Эффективность использования достоинств тонкостенной оболочки зависит от того, насколько удачно включена обшивка в общую силовую схему. Чтобы обшивка наилучшим образом выполняла силовую функцию, нужно исключить потерю её устойчивости при эксплуатационных нагрузках. Основная особенность тонкостенных оболочек - малая местная жёсткость. По этой причине к тонкостенным элементам нельзя непосредственно прикладывать большие сосредоточенные силы и моменты. При действии таких нагрузок применяют специальные элементы, задачей которых является преобразование сосредоточенных нагрузок в распределённые и наоборот.

Обеспечение высокой технологичности конструкции.

Требование высокой технологичности, как правило, приводит к утяжелению и в ряде случаев - к усложнению конструкции. Повышению технологичности способствуют: расчленение конструкции на агрегаты, отсеки и панели,- минимальное число деталей,- простые конфигурации деталей, допускающие применение высокопроизводительных процессов; правильный выбор конструкционных материалов с учётом их технологических свойств,- минимальный расход материалов.

Упрощение конструкции достигается за счёт целого ряда факторов: важное значение имеют простые конфигурации деталей, использование стандартных и нормализованных деталей, применение минимального числа типоразмеров и номенклатуры материалов и полуфабрикатов. Большие возможности упрощения конструкции открывает также использование ранее освоенных в производстве и опробованных в эксплуатации узлов и деталей.

Механические и физические свойства материала должны обеспечивать минимальную массу конструкции, допускать применение высокопроизводительных технологических процессов. Материалы должны быть коррозионно-стойкими, недорогими и изготовленными из недифицитного сырья. С точки зрения технологии производства и эксплуатации очень важно, чтобы конструкционный материал не имел склонности к образованию трещин и хорошо обрабатывался. Эти качества материала тем лучше, чем выше его пластичность, которая свидетельствует о способности материала поглощать энергию при деформации и потому является важнейшей характеристикой работоспособности, а следовательно, и ресурса конструкции. - Обеспечение эксплуатационного совершенства. Под эксплуатационным совершенством понимают совокупность свойств Л А, характеризующих его приспособленность к процессу эксплуатации на всех стадиях. Современные требования к эксплуатационным свойствам КР довольно жёсткие и состоят в следующем. После сборки и всесторонней проверки работоспособности на заводе ракета в течение регламентного срока хранения (10 лет) не должна требовать каких-либо восстановительных работ. Этого добиваются тщательной отработкой всех систем ракеты в процессе всесторонних испытаний, соответствующих реальным экстремальным условиям эксплуатации (по нагрузкам, температурному режиму, влажности и запыленности воздуха и пр.

Очень важно, чтобы оборудование было скомпоновано по блочному принципу, а конструкции узлов крепления блоков были легкосъёмными. Это обеспечивает замену блоков оборудования с минимальными затратами труда и времени.

По истечении регламентного срока эксплуатации ракеты подвергаются тщательному контролю с проведением контрольных пусков При наличии отказов ракеты направляются для доработок на заводы-изготовители. По результатам проверок и пусков принимается решение о продлении срока эксплуатации и уровня надёжности ракет в течение этого срока с ориентацией на то, чтобы общий срок службы ракет составлял примерно 20 лет.

Заключительная стадия эксплуатации - утилизация ракет. В настоящее время эта стадия очень неопределённая и весьма трудоёмкая, что является следствием недоработок при создании существующего парка ракет. По современным требованиям разработка технологии утилизации должна быть неотъемлемой частью проектных исследований и отражаться в проектной документации. С самого начала должно предусматриваться, какая часть элементов ракеты будет использоваться в качестве запасного фонда, какая часть планируется для использования в последующих модификациях ракеты, - особенно тщательно должны прорабатываться технологии уничтожения топлив и взрывчатых веществ.


1.2.1Технические требования

-Габариты изделия должны обеспечивать возможность пуска из контейнера.

-Системы управления-наведения должны обеспечивать точное попадание в цель.

-БЧ должна обеспечивать безотказную работу и безотказное хранение.


1.2.2Эксплуатационные требования

-КР должна быть удобной в эксплуатации, хранении и транспортировании; безотказной и надежной.

Что приводило к путанице). Нередко термин «крылатая ракета» ошибочно считают эквивалентом более узкого англоязычного термина cruise missile , однако последний относится только к управляемым ракетам, у которых большая часть полёта к цели проходит с постоянной скоростью .

Энциклопедичный YouTube

    1 / 5

    ✪ Испытания крылатой ракеты "БУРЯ"

    ✪ Новый российский космический двигатель позволит достичь Марса за полтора месяца

    ✪ Крылатые ракеты. National Geographic (HD)

    ✪ SLAM: крылатая ракета с ядерной энергетической установкой

    ✪ Ядерные космические двигатели: что это такое?

    Субтитры

Сравнение с другими видами ракет

Достоинства

  • Возможность задавать произвольный курс ракеты, в том числе, извилистую траекторию , что создаёт трудности для ПРО противника.
  • Возможность движения на малой высоте с огибанием рельефа , что затрудняет обнаружение ракеты радиолокационными средствами.
  • Современные крылатые ракеты предназначены для поражения цели с высокой точностью .

Недостатки

  • Относительно небольшие скорости (порядка скорости звука ~1150 км/ч).
  • Высокая стоимость по сравнению с другими боеприпасами.
  • Относительно малая мощность всех разрывных зарядов, за исключением ядерных .

Сравнение с самолётами

Параллельно в Британии по заказу военных Арчибальд Лоу вёл работы над радиоуправляемой «летающей бомбой» для поражения дирижаблей и наземных целей. Первая попытка полёта была осуществлёна 21 марта 1917 года и закончилась аварией. Подобный же проект разрабатывался Генри Фолландом . Летательный аппарат длиной около 6-7 метров, массой около 230 кг и двигателем мощностью 35 л. с. изготавливался «Aircraft Establishment Royal Aircraft Factory ». В результате трёх неудачных попыток полёта в июле 1917 года проект был закрыт .

В 1920 году в Англии стандартный самолёт-истребитель «Бристоль» F.2B был оснащён радиоуправлением и успешно летал. Для страховки в кабине самолёта находился лётчик. Однако уже через год был испытан управляемый по радио самолёт без пилота.

В 1924 году в журнале «Техника и жизнь» была опубликована работа Ф. А. Цандера «Перелеты на другие планеты», в которой было предложено применять крылья на ракетных летательных аппаратах .

В 1927 году создана авиационная торпеда (по терминологии того времени) «Laryng» - небольшой летательный аппарат с поршневым звездообразным мотором и системой гироскопического управления, оснащённый боеголовкой массой 113 кг. После длительных испытаний конструкции с кораблей и в пустынях Ирака производство признано нецелесообразным.

В 1931 году англичане создали радиоуправляемую воздушную мишень «Queen». Всего было построено три опытных образца, на основании успешных испытаний которых в 1935 году была запушена серия радиоуправляемых мишеней под обозначением DH.82B «Queen Bee» (пчела-королева, пчелиная матка) в количестве 420 экземпляров (как считают, именно с того времени к беспилотникам прилипло жаргонное название Drone (трутень)). Беспилотники «Queen Bee» применялись на начальном этапе второй мировой войны в качестве разведчиков. Характеристики: максимальная скорость - 175 км/час, практический потолок - 4267 м, продолжительность полёта - до трёх часов.

В СССР работы над телемеханическими самолётами проводились начиная с 20-х годов и до 1942 года. В качестве самолёта-снаряда был выбран бомбардировщик ТБ-1, для которого была разработана телемеханическая система «Дедал». В дальнейшем эти работы подстегнули разработку различных отечественных автопилотов. По программе рассматривались различные варианты самолётов-снарядов: СБ, И-16, УТ-2. В 1940 году велась разработка радиоуправляемого самолёта ТБ-3РН в двух вариантах: в первом бомбардировщик начинялся взрывчаткой и управлялся оператором с самолёта сопровождения, во втором варианте велись разработки дистанционно управляемого бомбардировщика, который после выполнения задания по бомбометанию должен был вернуться на базу и произвести посадку. Единственное боевое применение самолёта-снаряда ТБ-3 было в 1942 году, когда начинённый четырьмя тоннами тротила самолёт должен был поразить железнодорожный узел в Вязьме. Однако при подлёте к цели из-за возникших неполадок передатчика на самолёте сопровождения ДБ-3Ф самолёт-снаряд упал, промахнувшись мимо цели.

Также в СССР в конце 30-х годов разрабатывался составной самолёт-снаряд. В качестве носителя заряда использовался радиоуправляемый ТБ-3 с 3,5 тоннами взрывчатки, на спине которого крепился самолёт управления КР-6. Радиус действия сцепки доходил до 1200 км.

В 1941 году в США на фирме «Дженерал Моторс» разрабатывался самолёт-снаряд под шифром А-1, представляющий собой радиоуправляемый моноплан, стартующий с тележки. Боевой нагрузкой ЛА были бомбы весом до 225 кг. Было построено большое количество опытных экземпляров, но программу отменили в 1943 году. В 1942 году начались исследования по проекту «Option», результатом которого стала постройка серии аппаратов TDN-1, которые использовались для обучения и оценочных испытаний. Затем была построена партия самолётов-снарядов TDR-1 в количестве 189 штук. Боевое применение американским флотом против японцев атакующих дронов TDR-1 состоялось в районе Соломоновых островов в 1944 году. Из суммарно запущенных 46 29 достигли цели, что расценилось командующим флотом адмиралом Честером Нимитцем отрицательно.

В Германии программа разработки самолётов-снарядов различного назначения началась в 1941 году и достигла пика развития к концу войны. В 1942 году начато практическое изучение аэродинамики связки планера DFS-230 и самолётов управления типа Kl-35, Fw-56 и Bf-109. В результате было решено использовать связку из самолёта-снаряда J-88A и Bf-109F (программа «Бетховен»). В 1943 году было выдано задание на постройку опытной партии из 15 экземпляров системы, условно названной «Мистель-1» (упряжка с навозом ). Весной 1944 года в составе 4-й группы бомбардировочной эскадры KG101 сформирована учебная группа. Ночью 24 июня 1944 года эскадрилья впервые атаковала группу кораблей союзников в устье реки Сена. По результатам удара началась разработка систем «Мистель-2» и «Мистель-3». В октябре этого года группа, на вооружении которой состояло 60 «Мистелей», была передана в состав экспериментальной KG200. Весной 1945 года на «Мистели» частично перевооружили KG30, о результативности их работы достоверных данных нет. Также строились серийно «Мистель-4», представляющие собой связку из J-88G-7 и истребителя Ta-152H. До конца войны было изготовлено 250 экземпляров, до 50 было захвачено союзниками. Проект «Мистель-5» представлял собой связку из нижнего самолёта-снаряда Ta-154А и верхнего самолёта управления Fw190A-8. В ходе работ дошли до переоборудования первой партии в четыре связки, затем переоборудование было отменено. Также немцы разрабатывали другие проекты составных самолётов, в том числе и с реактивными двигателями. В частности, 5 эскадрилья эскадры KG200 занималась вопросами применения буксируемого самолёта-снаряда на базе реактивного Ме-328В

В ночь с 4 на 5 июня 1944 года беспилотный радиоуправляемый самолёт-снаряд S.M.79 ВВС Итальянской Социальной Республики произвёл первый и единственный боевой вылет в направлении Гибралтара, с целью атаковать стоявшие там английские корабли. После того, как пилот выбросился с парашютом, управление велось с самолёта сопровождения Cant Z.1007-II. Из-за дефекта управления самолёт-снаряд не долетел до цели и упал.

В июле 1944 года Воздушные силы США приняли программу «Афродита». Смыслом программы было переоборудование отработавших ресурс бомбардировщиков В-17 в самолёты-снаряды, управляемые по радио с самолёта сопровождения. Точно также, как и на советских ТБ-3РН, самолёт поднимал в воздух экипаж из пилота и бортинженера, вёл его к цели вручную, затем активировал телеуправление, боевую часть (9070 кг ВВ «Торпекс») и выбрасывался с парашютами (верх кабины самолёта был срезан). Самолёт-снаряд продолжал полёт к цели, управляемый по радио, а экипаж подбирала команда эвакуации. Переделанные В-17, получившие индекс BQ-7, и самолёты сопровождения В-17 под индексом CQ-4 поступили в 562-ю бомбардировочную эскадрилью. Самолёты-снаряды несколько раз были задействованы в боевых операциях (в августе и октябре 1944 года), против немецких позиций ракет Фау-1. Операции с применением самолётов-снарядов против сильно защищённых целей были признаны малорезультативными, поэтому было решено их использовать по крупным промышленным целям. BQ-7 ещё несколько раз использовались при налётах без особого успеха. Программа была признана неудачной, а самолёты-снаряды BQ-7 более опасными для своих экипажей, чем для противника. Тем не менее, дальнейшем развитием программы стала переделка бомбардировщиков В-24 в самолёты снаряды BQ-8. Принцип применения остался прежнем. ВМС США начали собственную программу по переделке RB4Y-1 (патрульной версии В-24). Однако из-за низкой точности, надёжности и высокой сложности применения программа была закрыта.

Первой в мире классической крылатой ракетой, производившейся серийно и применявшейся в реальных боевых действиях, стала «Фау-1 » (Fi-103), разработанная Германией . Она впервые была испытана 21 декабря 1942 года. Впервые в боевых условиях она была применена в конце Второй мировой войны против Великобритании . Однако из-за низкой точности системы наведения ракеты в составе экспериментальной эскадры KG200 была сформирована 5 эскадрилья, в которой вполне серьезно, в том числе, отрабатывалась возможность управления ракетой Fi-103 пилотом, который на конечном участке траектории должен был, теоретически, выбросится с парашютом.

В сентябре 1944 года в московское КБ были доставлены обломки V-1, а позже образцы ракет и чертежи, захваченные в Пенемюнде . Советскими властями было принято решение создать свои «самолёты-снаряды». Разработка проекта была доверена Владимиру Челомею . Через 9 лет параллельно с Челомеем разработку начал А. И. Микоян .

В 1947 году в СССР начались работы над крылатой ракетой «Комета». Ракета проектировалась в специальном КБ-1, планер ракеты создавался в ОКБ-155 на базе истребителя МиГ-15. Ракета поставлялась в войска на протяжении многих лет и производилась в вариантах воздушного старта (КС-1), наземного старта (С-2 «Сопка», «Стрела», ФКР-1). Для отработки систем ракеты и обучения личного состава на базе самолёта МиГ-17 был сконструирован пилотируемый «самолёт-дублёр „Кометы“» (СДК), выпускаемый серийно.

В 1950-х годах предполагалось развитие крылатых ракет в качестве стратегических межконтинентальных средств доставки ядерных зарядов. В КБ Лавочкина шла разработка двухступенчатой крылатой ракеты «Буря» , работы были остановлены по экономическим соображениям и в связи с успехами в разработке баллистических ракет . Единственным состоявшим на вооружении комплексом крылатых ракет межконтинентального класса был разработанный в США SM-62 Snark , очень недолгое время (в 1961) находившийся на боевом дежурстве.

В конце 50-х годов прошлого века начали разрабатываться крылатые ракеты с мощными жидкостными ракетными двигателями, позволяющими добиться значительного прироста характеристик ракеты.

Классификация

Крылатые ракеты делятся

  • по типу заряда:
    • с ядерным снаряжением
    • с обычным снаряжением
  • по решаемым задачам (назначению):
    • стратегические
    • тактические
    • оперативно-тактические (чаще всего противокорабельные)
  • по типу базирования:
    • наземного
    • воздушного
    • морского

В настоящее время крылатыми ракетами морского базирования оснащаются корабли, ракетные катера и подводные лодки (см. противокорабельная ракета).

Существующие системы

Производства в разных странах

СССР и Россия

  • 10XН
  • 16Х - опытная крылатая ракета воздушного старта с пульсирующим воздушно-реактивным двигателем.
  • КС-1 - первая серийная дозвуковая противокорабельная крылатая ракета воздушного старта, средней дальности.
  • КСР-2
  • КСР-5 - сверхзвуковая противокорабельная крылатая ракета воздушного старта, большой дальности, с фугасно-кумулятивной или ядерной БЧ.
  • КСР-11 - сверхзвуковая противорадиолокационная крылатая ракета воздушного старта, большой дальности, с фугасной или фугасно-осколочной БЧ.
  • К-10С - сверхзвуковая противокорабельная крылатая ракета воздушного старта, большой дальности, с фугасно-проникающей или ядерной БЧ.
  • Х-20 - сверхзвуковая крылатая ракета воздушного старта, большой дальности, с термоядерной БЧ.
  • Х-22 - сверхзвуковая противокорабельная крылатая ракета воздушного старта, большой дальности, с фугасно проникающей или ядерной БЧ.

Вступление

Честно говоря, когда я услышал сообщение, что корабли каспийской флотилии обстреляли территорию Сирии ракетами, то несколько минут тупил. В голове прокручивался маршрут перехода кораблей из Каспийского моря в Средиземное. Но когда понял что мы, практически не выходя из дома, выстрелили на полторы тысячи километров, то очень порадовался за наших моряков и сел писать статью про КРЫЛАТУЮ РАКЕТУ КАЛИБР.

Прошла неделя после публикации этой статьи, а уже надо писать дополнения и разъяснения. Дело в том что многие ура патриоты и эмоциональные но технически не грамотные блондинки посчитали что мы взяли американский флот за яйца. Это далеко не так. Потопить крылатой ракетой КАЛИБР американский авианосец практически не возможно, и десятью КАЛИБРАМИ тоже. Их просто собьют на подлёте. Сначала зенитными ракетами, потом многоствольной зенитной артиллерией.

Поэтому что бы потопить авианосец надо запустить ОЧЕНЬ БОЛЬШОЕ КОЛИЧЕСТВО ракет с ЯДЕРНОЙ БОЕВОЙ ЧАСТЬЮ. Одна из них вероятно сможет преодолеть оборону кораблей сопровождения и совершить воздушный ядерный взрыв который уничтожит локаторы вражеских кораблей. А уже следующая ракета и опять с ядерной боевой частью (потому что обычная боевая часть весом 450 килограмм против авианосца весом СТО ТЫСЯЧ ТОНН это просто смешно) уничтожит авианосец.

КРЫЛАТАЯ РАКЕТА КАЛИБР

Если кликнуть по фотографии, то некоторые увеличиваются до небывалых размеров.
Вообще правильно было написать группа ракет КАЛИБР. И ракеты в группе, как видно на фотографиях, достаточно разные. Они имеют четыре основных варианта базирования

1. Крылатая ракета для базирования на подводных лодках КАЛИБР-ПЛЕ
2. Крылатая ракета для базирования на надводных кораблях КАЛИБР-НКЭ
3. Крылатая ракета мобильного базирования КАЛИБР-Н
4. Крылатая ракета авиационного базирования КАЛИБР-А

По боевому назначению крылатая ракета КАЛИБР имеет три варианта - противокорабельная, противолодочная и высокоточная ракета для уничтожения стационарных наземных целей. Правда противолодочные варианты ракет ни разу не крылатые.
Запускается ракета из универсального стартового модуля (грубо говоря трубы обыкновенной), который может располагаться вертикально под палубой корабля, наклонно на палубе корабля, в торпедном аппарате подводной лодки. Диаметр пускового устройства равен пятьсот тридцать три миллиметра и соответствует диаметру торпедного аппарата итальянского флота времён Бенито Муссолини. Дело в том что до Великой Отечественной Войны Советский Союз купил в Италии образцы торпед, и вот теперь диаметры наших пусковых установок привязаны к мировым стандартам.
Все варианты, кроме авиационного имеют стартовый ускоритель твёрдого топлива.
Система наведения 3М-14Э комбинированная - инерциальная с возможностью уточнения текущего положения через спутниковую систему навигации + радио высотомер.
Полёт происходит по заданному маршруту на высоте двадцать метров над морем и от пятидесяти до ста пятидесяти метров над сушей. Высота полёта над сушей зависит от профиля местности. Сам маршрут может быть составлен по сложной схеме с обходом зон ПВО противника. В заданной точке ракета пикирует на цель или производит воздушный подрыв боевой части. Боевая часть может быть как обычная так и ядерная.
У противокорабельной ракеты наведение на конечном участке траектории осуществляется при помощи защищённой от помех активной радиолокационной головки самонаведения.

Вот не удержался, украл фразу с соседнего ресурса. У меня всегда возникает вопрос, что значит мощная боевая часть весом четыреста пятьдесят килограмм? Это двигатель в сорок литров может быть рядовым или форсированным (мощным). А боевые части одного веса обычно имеют одинаковую мощность, потому что взрывчатые вещества очень мало отличаются друг от друга по мощности.

КРЫЛАТАЯ РАКЕТА КАЛИБР 3М-14Э

Это та самая, которая в Сирию улетела.



Вот её фотография и таблица с техническими характеристиками. Как видите дальность всего триста километров. Многие сразу закричали - нас обманывают.
Давайте разбираться.
3М-14Э имеет современный двухконтурный реактивный двигатель тягой около восьмидесяти килограмм. И скорость полёта восемьсот километров в час. Возьмём достаточно высокий для современного двухконтурного двигателя расход топлива на килограмм тяги в час - 500 грамм (в реальности он наверняка ниже) и умножим на тягу (восемьдесят килограмм). Получаем СОРОК килограмм топлива расходуется на час полёта. Три часа это сто двадцать килограмм израсходованного топлива и преодолённая дистанция в две тысячи четыреста километров.
Как вы думаете на ракете весом в полторы тонны можно разместить двести килограмм топлива?
Я не знаю точных характеристик 3М-14Э, но могу предположить, что максимальная дальность с обычной боеголовкой составляет две с половиной тысячи километров, а с более лёгкой ядерной около трёх тысяч.
Но вернёмся к таблице. Дело в том что это характеристики 3М-14Э для продажу за границу, а закон запрещает продавать ракеты с дальностью более трёхсот километров.
Дело в том что ракеты калибр сначала стали продавать за границу а уж потом родным вооруженным силам - время было такое.

Крылатая ракета 3М-14Э, вид со стороны твёрдотопливного ускорителя.

КРЫЛАТАЯ РАКЕТА КАЛИБР 3М-54Э и 3М-54Э1



Это противокорабельный вариант КАЛИБРА. 3М-54Э имеет три ступени. Твёрдотопливную стартовую, с реактивным двигателем маршевую и твёрдотопливную боевую. То есть дозвуковая крылатая ракета выстреливает боевую часть, которая разгоняется до сверхзвуковой скорости перед поражением цели.

3М-54Э1 имеет компоновку такую же как и 3М-14Э но у неё кроме инерциальной системы наведения есть радиолокационная головка наведения, которая захватывает цель на дистанции около двадцати километров. Как видно из таблицы 3М-54Э1 имеет более тяжелую боевую часть чем ракета со сверхзвуковой боевой частью. Что касается дальности пуска 3М-54Э1, то она может быть не на много меньше чем у 3М-14Э. Но тут возникает проблема с тем куда направлять ракету, ведь за час полёта вражеский корабль уйдёт из точки прицеливания километров на сорок а радиус действия локатора ракеты двадцать километров.





Эта фотография показывает контейнерный вариант размещения противокорабельных ракет КАЛИБР. То есть контейнер с КАЛИБРОМ можно поставить на любую баржу, которая с началом боевых действий неожиданно окажется ракетным крейсером.

РАКЕТА КАЛИБР 91РЭ1 и 91РТЭ2

Эти варианты КАЛИБРА предназначены для борьбы с подводными лодками, и они ни разу не крылатые. В сущности это небольшая баллистическая ракета на твёрдом топливе, боевой частью которой является противолодочная торпеда. Ракета доставляет торпеду в зону нахождения подводной лодки.
91РЭ1 запускается с подводной лодки с достаточно большой глубины, поэтому она имеет самый большой стартовый ускоритель.




91РТЭ2 запускается из торпедного аппарата надводного корабля.

На фотографии она на первом плане.

Авиационные варианты КАЛИБРА

В авиационном варианте точно выпускают крылатые ракеты 3М-54Э1 и 3М-14Э. От ракет морского и наземного базирования они отличаются только отсутствием ускорителя.



Вот модель его пусковой установки. На фотографии видно что ракета 3М-54Э занимает его полностью, а у ракеты 3М-54Э1 остаётся свободное пространство. К стати ракета 3М-54Э1 идеально помещается в торпедный аппарат стандарта НАТО. Мы НАТО снабжать собирались?



Контейнер управления и пульт управления контейнерного варианта крылатой ракеты КАЛИБР

На кораблях стандартной считается установка из восьми вертикальных пусковых установок





На фотографиях видны крышки пусковых установок КАЛИБРА сразу за мачтой.



А на этом корабле пусковая установка КАЛИБРА расположена в носовой части перед боевой рубкой. Командир в этом случае точно знает улетела ракета или нет.
На верхней фотографии на корабле ещё не установлена носовая артиллерийская установка.

Сирийская кампания прошла под знаком демонстрации новых возможностей российских вооруженных сил, в частности, в сфере современного высокоточного оружия. И если «Калибр» был на слуху, то его авиационные собратья незаслуженно оказались в тени.

Авиационные крылатые ракеты большой дальности (КРБД) современного вида сформировались в 1970-х годах, когда, воспользовавшись новейшими достижениями науки и техники, США и СССР начали работы по созданию принципиально новых авиационных средств доставки ядерных зарядов. К тому времени стало ясно, что продолжение гонки за скоростью или высотой полета самолета более не обеспечивает гарантии прорыва ПВО.

Конечно, на тот момент уже состояли на вооружении такие КРБД, как, например, AGM-28 «Hound Dog» или Х-20. Однако наряду с высокой скоростью и неплохой дальностью полета они обладали и целым рядом недостатков, в первую очередь – значительными массой и габаритами, ограничивавшими боевую нагрузку только несколькими изделиями. При полете на большой высоте и скорости в 2 М такие ракеты были уязвимы для ПВО, где принципиальной разницы в перехвате скоростного бомбардировщика с ядерной бомбой или крупноразмерной ракеты не было.

Под воздействием инерции мышления живучесть ракет старались поднять традиционно – увеличив скорость и высоту полета. Если приводить примеры из советских разработок, это программы «Метеорит-А» и Х-45. При этом недостаток в виде габаритов и массы только обострялся: так, будущий Ту-160 должен был нести во внутренних отсеках только две ракеты Х-45 с дальностью до 1500 км. На фоне параллельного развития баллистических ракет наземного и морского базирования, повышения их точности и оснащения их разделяющимися головными частями индивидуального наведения сама целесообразность сохранения стратегической авиации как компонента ядерной триады становилась спорной.

Ответ был найден в США в виде создания малогабаритных и легких дозвуковых ракет, оснащенных экономичными турбореактивными двигателям. Пришли к этой идее почти случайно – задумавшись о возможности вооружить ядерными зарядами перспективные ложные цели. Прорыв ПВО новые ракеты должны были осуществлять скрытно, за счет полета на сверхмалых высотах и сниженной заметности самой ракеты. Главным достоинством были малые габариты, позволявшие каждому ракетоносцу атаковать множество целей. К прочим преимуществам относилась высокая точность новых ракет, которую должны были обеспечить новейшие достижения в области инерциальных навигационных систем и миниатюризация вычислительной техники.

Еще за несколько лет до того как в США началось активное финансирование создания будущей AGM-86 ALCM, в СССР конструкторское бюро «Радуга», проведя самостоятельные теоретические изыскания, предлагало начать работы над подобным оружием, но у одержимых высокими скоростями военных это не вызвало интереса. Мнение изменилось, только когда стали ясны планы заокеанских «коллег». На вооружение американская AGM-86B и советская Х-55 были приняты почти одновременно – в конце 1982 и 1983 годов соответственно. При этом в США под новые ракеты модернизировали имеющиеся B-52G и B-52H, первоначально максимально просто (барабанную пусковую установку во внутренний отсек получили только B-52H, и только с 1988 года), в то время как в СССР новыми ракетами оснащались новые ракетоносцы Ту-95МС и Ту-160.

И американским и советским конструкторам удалось создать близкое по характеристикам оружие – и AGM-86B и Х-55 имели дальность полета около 2500 км, крейсерскую скорость около 800 км/ч и высокую точность: круговое вероятное отклонение от цели менее 100 м. Спутниковую навигацию не использовали, работали точнейшие инерциальные навигационные системы (ИНС) и коррекция радиовысотомером по цифровым картам местности. Учитывая оснащение ракет малогабаритными термоядерными боевыми частями (БЧ) с мощностью взрыва до 150 кТ (AGM-86B) или до 200 кТ (Х-55), можно было говорить об обеспечении гарантированного уничтожения даже самых укрепленных целей.

В рамках продолжающейся гонки ядерных вооружений дальнейшая работа сосредоточилась в первую очередь на увеличении дальности ракет, с тем чтобы вывести рубеж их пуска далеко за зону действия перехватчиков ПВО. В США была создана ракета AGM-129 ACM с дальностью, по различным оценкам, до 3400–3700 км. Еще одним отличием от предшественницы стало максимальное внедрение технологий снижения заметности. Однако новая ракета оказалась более дорогой и сложной в обслуживании, не была выпущена в достаточном количестве, чтобы заменить AGM-86B, и в 2012 году была снята с вооружения. Единственной КРБД США с ядерной боевой частью сейчас остается AGM-86B.

В России пошли по более простому и экономичному пути модернизации Х-55 путем оснащения ее накладными, конформными топливными баками. С ними дальность Х-55СМ достигла 3500 км. Если исходить из численных показателей, Х-55СМ остается и сегодня основным ядерным оружием воздушной части российской ядерной триады.

От носителей ядерных зарядов к носителям демократии

Уникальные качества нового оружия заставили присмотреться к нему не только в качестве средства доставки ядерного заряда, но и как к новому авиационному средству поражения для обычных конфликтов. В своем изначальном варианте КРБД уже обладали неплохой точностью, которая была значительно повышена за счет использования спутниковой навигации. В США во второй половине 1980-х годов началась программа переоборудования AGM-86B в неядерные AGM-86C CALCM c осколочно-фугасной БЧ вместо ядерной. Из-за более тяжелого заряда значительно упала дальность – примерно до 1200 км.

Первоначально программа велась в обстановке строгой секретности, для ВВС США новое оружие должно было стать деликатным инструментом для операций, подобных «Каньону Эльдорадо» . Боевым крещением для этих КРБД стала Война в Заливе 1991 года, когда семь B-52G совершили беспосадочный 35-часовой перелет из США до Ирака и обратно и выпустили по целям 35 ракет AGM-86C, на тот момент практически весь их запас (еще четыре ракеты не запустили из-за неполадок). По различным оценкам, цели успешно поразили 31 или 33 ракеты. Кстати, секретность привела к тому, что официально их применение было признано только через год, несмотря на то, что флотский «Томагавк» стал одной из медийных «звезд» той войны.

Успех в войне в Ираке привел к взрывному росту интереса к КРБД как важнейшему оружию в локальных конфликтах. На фоне сокращения ядерного оружия многие AGM-86B были переоборудованы в «тактические» варианты, последние пятьдесят – по стандарту AGM-86D, с проникающими боевыми частями и способностью поражать цели в пикировании с точностью до нескольких метров. Учитывая меньшую массу проникающей БЧ, чем фугасной, возможно, дальность этих ракет выше.

Логичным следующим этапом в развитии стало создание новых крылатых неядерных ракет. Принципиальное новшество заключалось в том, что в качестве носителей рассматривались в первую очередь многоцелевые истребители. Хотя при этом габаритно-весовые ограничения были более серьезны, чем у ракет, рассчитанных на стратегические бомбардировщики. Вкупе с большей массой неядерных боевых частей это приводило к тому, что дальность измерялась сотнями, а не тысячами километров, но все равно была далеко за пределами зоны действия ПВО. Тактическая авиация приобретала принципиально новые возможности, ранее доступные только стратегической.

Наиболее распространенные высокоточные крылатые ракеты тактической авиации сегодня – американские AGM-158 JASSM, выпущенные в большом количестве для ВВС США и закупленные Австралией, Финляндией и Польшей. Базовая версия AGM-158A имеет дальность около 370 км, модернизированная AGM-158B JASSM-ER при тех же внешних габаритах, но с более экономичным двигателем и, вероятно, уменьшенной боевой частью – около 1000 км. Благодаря оснащению богатым набором навигационного и прицельного оборудования, от ИНС и GPS до инфракрасной ГСН, ракета обладает высокой помехозащищенностью и потенциально высочайшей точностью, вплоть всего до двух метров отклонения от цели.

На основе JASSM-ER с минимальными изменениям (установлена дополнительная радиолокационная ГСН) создана и проходит испытания ПКР AGM-158C LRASM, сохраняющая дальность оригинала и возможность применения по наземным целям. Учитывая избыточную для дозвуковой ПКР дальность, можно предположить, что таким образом ВМС США, в свое время отказавшиеся от закупок JASSM, теперь хотят получить ее для палубной авиации. Ближайшим аналогом, состоящим сейчас на вооружении флота, является AGM-84H/K SLAM-ER с дальностью около 270 км.

В последние два десятилетия произошел настоящий бум в этой области. Находятся в серии и активно поставляются на экспорт немецко-шведская Taurus KEPD, франко-английская SCALP EG/Storm Shadow. В разработке норвежско-американская JSM, турецкая SOM и другие. Особняком стоит французская высокоскоростная (до 3М) ASMP, в последней модификации с дальностью до 500 км. В отличие от остальных, она оснащается исключительно термоядерной боевой частью и является оружием воздушного компонента французских СЯС. В США на смену ALCM и JASSM разрабатывается перспективная КРБД двойного назначения (с ядерной или обычной боевой частью) LRSO. До недавнего времени Россия, казалось, не была приглашена на это соревнование.

Копье для ВКС России

Однако советские военные и инженеры осознавали потенциал высокоточного оружия. Во второй половине 1980-х годов начались работы по созданию как неядерных версий имеющихся ракет, так и ракеты нового поколения, ответа на американскую AGM-129. К сожалению, по этим работам нанес тяжелый удар период хронического недофинансирования «оборонки» в 1990-е годы, и воплощение идеи задержалось, как минимум, на десятилетие.

С 2000 года приступила к летными испытаниям Х-555 – неядерная версия Х-55СМ с системой наведения, обеспечивающей повышенную (КВО – 20 м), по сравнению с оригиналом, точность за счет оснащения оптико-электронной и спутниковыми системами наведения. Может оснащаться фугасной, проникающей или кассетной БЧ. Дальность ракеты с конформными баками достигает 2000 км, то есть превосходит главный зарубежный аналог – AGM-86B в полтора-два раза. Х-555 в середине «нулевых» прошли государственные испытания и начали поступать на вооружение дальней авиации России. Аналогично Х-55СМ, они применяются с ракетоносцев Ту-95МС (шесть ракет на одной барабанной ПУ, внешние узлы подвески не используются) и Ту-160 (12 ракет на двух барабанных ПУ). Впервые в боевой обстановке, как и отечественная ракетоносная стратегическая авиация в целом, они были применены в ноябре 2015 года, когда Ту-95МС нанесли удары ими по целям боевиков в Сирии, причем ракеты по пути преодолели «своим ходом» территорию Ирана и Ирака – для них это не расстояние.

Создание и освоение Х-555 было относительно простым и быстрым способом получить неядерную КРБД. Параллельно с этим велась работа над ракетой качественно нового уровня. До показательного применения в тот же ноябрьский день Х-101 имела полумифический статус – не было даже уверенности в том, что она принята на вооружение, ввиду отсутствия свидетельств нахождения в частях «живых» изделий. Но то, что «длинная рука» ВКС России полностью готова к применению, было продемонстрировано на детальных видеорепортажах. А тот факт, что подобные удары повторялись неоднократно, показал, что, в отличие от США в 1991 году, Россия не отстреляла весь свой арсенал за один день.

Ракеты Х-101/102 (Х-102 – с ядерной БЧ) – наиболее технически продвинутые и дальнобойные современные КРБД. Высокая точность обеспечивается оптико-электронной системой наведения на конечном участке. Дальность, по различным оценкам, достигает 4500–5500 км (возможно, верхняя граница относится к Х-102) и, таким образом, приближается к межконтинентальной, даже без учета большого радиуса полета стратегического ракетоносца. Для повышения выживаемости массово внедрены средства снижения заметности, а зачастую избыточный запас топлива позволяет большую часть полета проводить на сверхмалых высотах . Носителями новых ракет служат прошедшие модернизацию Ту-95МСМ (до восьми ракет на внешних узлах подвески) и Ту-160 (до 12 ракет на двух барабанных ПУ).

Пусть и с некоторым отставанием от приоритетного перевооружения дальней авиации, ведется активная работа и над более легкими ракетами. Проходит испытания созданная на основе Х-101 ракета Х-50 – максимально унифицированная укороченная версия. За счет меньшей массы и габаритов ее можно будет применять с барабанной пусковой установки меньшего размера, размещаемой в отсеке вооружения модернизированного Ту-22М3М, а Ту-95МСМ сможет нести кроме восьми ракет на внешней подвеске еще шесть на «барабане». Кроме того, Х-50, вероятно, смогут применять такие самолеты тактической авиации, как Су-34. Дальность ее оценивается как минимум в 1500 км, что значительно превосходит возможности JASSM-ER. Ту-22М3М сможет также применять тяжелые КР Х-32, по своим характеристикам приближающиеся к гиперзвуковым (дальность до 1000 км, скорость более 4 М) и предназначенные в первую очередь для уничтожения кораблей. Однако их значительные масса и габариты ограничивают типовую нагрузку двумя такими ракетами (в перегруз – тремя).

Если с такими ракетами, как Х-101 и Х-50, Россия значительно отстала по времени, но также существенно превзошла по характеристикам зарубежные аналоги, то на следующем этапе развития авиационного вооружения она твердо вознамерилась вырваться вперед. К началу следующего десятилетия планируется принять на вооружение сначала оперативно-тактическую гиперзвуковую ракету с дальностью около 1500 км и скоростью до 6 М, а позднее и стратегические, еще более скоростные изделия.

В новом веке, после того как традиционным баллистическим ракетам все больше начинают угрожать средства ПРО, авиация готова вновь сыграть в «быстрее-выше-дальше», и каковы будут результаты этого раунда – покажет только время.

Авиационный рейд 1986 года группы бомбардировщиков F -111 из Великобритании на Триполи, в ответ на ряд терактов исламистских группировок, как считалось, поддерживаемых Ливией.

Р асход при этом значительно выше , и, как правило, на безопасных участках КР стараются лететь на высотах в несколько километров.